首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interannual variability of the Madden– Julian Oscillation (MJO) is investigated in an ensemble of 15 experiments performed with the ECHAM4 T30 general circulation model (GCM). The model experiments have been performed with AMIP conditions from January 1979 to December 1993. The MJO signal has been identified applying a principal oscillation pattern (POP) analysis to the 200-mb tropical velocity potential. The results obtained from the model ensemble are compared with 15?y of ECMWF re-analysis and OLR observations. The results suggest that the warm and cold phases of El Niño have some influence on the spatial propagation of the oscillation. Both in the re-analysis and in the model ensemble, the results indicate that during La Niña conditions the MJO is mostly confined west of the date line, with the largest activity located over the Indian Ocean and the western Pacific. In warm El Niño conditions, the convective anomalies associated with the oscillation appear to penetrate farther into the central Pacific. These changes in the MJO convective forcing seem to affect the zonal mean of the rotational component of the flow anomaly, which tends to weaken during warm El Niño periods. Some weak reproducibility of the interannual variability of the MJO activity is found. The results obtained from four-member and eight-member subsamples of the ensemble indicate that the reproducibility of the interannual behaviour of the MJO can be detected by choosing an ensemble of a larger size. Corresponding to the emergence of reproducibility with the increasing size of the sample, the correlation between the MJO activity and the Niño-3 SST anomaly appears to in-tensify.  相似文献   

3.
The Madden–Julian Oscillation(MJO) has a significant impact on global weather and climate and can be used as a predictability resource in extended-term forecasting. We evaluate the ability of the Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) to represent the MJO by using the diagnostic method proposed by the US Climate Variability and Predictability Program(CLIVAR) MJO Working Group(MJOWG). In general,the model simulates some major characteristics of MJO well, such as the seasonality characteristics and geographical dependence, the intensity of intraseasonal variability(ISV), dominant periodicity, propagation characteristics, coherence between outgoing longwave radiation(OLR) and wind, and life cycle of MJO signals. However, there are a few biases in the model when compared with observational/reanalyzed data. These include an overestimate of precipitation in the convergence zone of the North and South Pacific, a slightly weaker eastward propagation, and a shift in the dominant periodicity toward lower frequencies with slower speeds of eastward propagation. The model gives a poor simulation of the northward propagation of MJO in summer and shows less coherence between the MJO convection and wind. The role of moistening in the planetary boundary layer(PBL) in the eastward/northward propagation of MJO was also explored. An accurate representation of the vertical titling structure of moisture anomalies in CAMS-CSM leads to moistening of the PBL ahead of convection, which accounts for the eastward/northward propagation of MJO. Poor simulation of the vertical structure of the wind and moisture anomalies in the western Pacific leads to a poor simulation of the northward propagation of MJO in this area. Budget analysis of the PBL integral moisture anomalies shows that the model gives a good simulation of the moisture charging process ahead of MJO convection and that the zonal advection of moisture convergence term has a primary role in the detour of MJO over the Maritime Continent.  相似文献   

4.
Cyclonic storms having maximum winds of 34 knots and above that had genesis in north Indian Ocean have been studied with respect to the eastward passage of Madden–Julian Oscillation (MJO). In the three decades (1979–2008), there were a total of 118 cyclones reported in which 96 formed in the region chosen (0–15oN, 60oE–100oE) for the study. Although the percentage of MJO days inducing cyclogenesis is small, it is found that tropical cyclone genesis preferentially occurred during the convective phase of MJO. This accounted for 44 cyclones of the total 54 cyclones (i.e., 81.5%) formed under MJO amplitude 1 and above. The study has shown that, when the enhanced convection of MJO is over the maritime continent and the adjoining eastern Indian Ocean, it creates the highest favorable environment for cyclogenesis in the Bay of Bengal. During this phase, westerlies at 850 hPa are strong in the equatorial region south of Bay of Bengal creating strong cyclonic vorticity in the lower troposphere along with the low vertical wind shear.  相似文献   

5.
A suite of statistical atmosphere-only linear inverse models of varying complexity are used to hindcast recent MJO events from the Year of Tropical Convection and the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden–Julian Oscillation mission periods, as well as over the 2000–2009 time period. Skill exists for over two weeks, competitive with the skill of some numerical models in both bivariate correlation and root-mean-squared-error scores during both observational mission periods. Skill is higher during mature Madden–Julian Oscillation conditions, as opposed to during growth phases, suggesting that growth dynamics may be more complex or non-linear since they are not as well captured by a linear model. There is little prediction skill gained by including non-leading modes of variability.  相似文献   

6.
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden–Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.  相似文献   

7.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

8.
9.
10.
This study investigates whether and how the Madden–Julian Oscillation (MJO) influences persistent extreme cold events (PECEs), a major type of natural disaster in boreal winter, over Northeast China. Significantly increased occurrence probabilities of PECEs over Northeast China are observed in phases 3 and 5 of the MJO, when MJO-related convection is located over the eastern Indian Ocean and the western Pacific, respectively. Using the temperature tendency equation, it is found that the physical processes resulting in the cooling effects required for the occurrence of PECEs are distinct in the two phases of the MJO when MJO-related convection is consistently located over the warm pool area. The PECEs in phase 3 of the MJO mainly occur as a result of adiabatic cooling associated with ascending motion of the low-pressure anomaly over Northeast Asia. The cooling effect associated with phase 5 is stronger and longer than that in phase 3. The PECEs associated with phase 5 of the MJO are linked with the northwesterly cold advection of a cyclonic anomaly, which is part of the subtropical Rossby wave train induced by MJO-related convection in the tropical western Pacific.摘要 本文利用高分辨率气温数据和热带季节内振荡 (MJO) 实时指数, 研究了1979–2015年冬季MJO活动对中国东北持续性极端低温事件 (PECE) 的影响特征和机理.结果表明:当MJO对流分别位于暖池地区的东印度洋 (位相3) 和西太平洋 (位相5) 时, 中国东北PECE的发生频率显著增加.利用温度方程诊断分析发现MJO两个位相所导致的冷却过程不同: 当 MJO处于位相3时, 中国东北地区为低压异常, 上升运动引起绝热冷却作用; 而位相5所形成的气旋性环流为中国东北地区带来西北风冷平流, 降温过程更强且持续更长时间.  相似文献   

11.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

12.
Multi-scale interactions between El Niño–Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north–south disparity. Thus, we suggest that the key factor which might explain the north–south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.  相似文献   

13.
The Madden–Julian oscillation (MJO) produced by a mesoscale model is investigated using standardized statistical diagnostics. Results show that upper- and lower-level zonal winds display the correct MJO structure, phase speed (8 m s?1) and space–time power spectrum. However, the simulated free atmosphere moisture, outgoing longwave radiation and precipitation do not exhibit any clear MJO signal. Yet, the boundary layer moisture, moist static energy and atmospheric instability, measured using a moist static energy instability index, have clear MJO signals. A significant finding is the ability of the model to simulate a realistic MJO phase speed in the winds without reproducing the MJO wind-convection coupling or a realistic propagation in the free atmosphere water vapor. This study suggests that the convergence of boundary layer moisture and the discharge and recharge of the moist static energy and atmospheric instability may be responsible for controlling the speed of propagation of the MJO circulation.  相似文献   

14.
15.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   

16.
This article builds on the previous studies on storminess conditions in the northeast North Atlantic–European region. The period of surface pressure data analyzed is extended from 1881–1998 to 1874–2007. The seasonality and regional differences of storminess conditions in this region are also explored in more detail. The results show that storminess conditions in this region have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences. The most notable differences are seen between winter and summer, and between the North Sea area and other parts of the region. In particular, winter storminess shows an unprecedented maximum in the early 1990s in the North Sea area and a steady upward trend in the northeastern part of the region, while it appears to have declined in the western part of the region. In summer, storminess appears to have declined in most parts of this region. In the transition seasons, the storminess trend is characterized by increases in the northern part of the region and decreases in the southeastern part, with increases in the north being larger in spring. In particular, the results also show that the earliest storminess maximum occurred in summer (around 1880), while the latest storminess maximum occurred in winter (in the early 1990s). Looking at the annual metrics alone (as in previous studies), one would conclude that the latest storminess maximum is at about the same level as the earliest storminess maximum, without realizing that this is comparing the highest winter storminess level with the highest summer storminess level in the period of record analyzed, while winter and summer storminess conditions have undergone very different long-term variability and trends. Also, storminess conditions in the NE Atlantic region are found to be significantly correlated with the simultaneous NAO index in all seasons but autumn. The higher the NAO index, the rougher the NE Atlantic storminess conditions, especially in winter and spring.  相似文献   

17.
Summary Climatological responses of winter (DJFM) precipitation at 78 stations of Turkey to variability of the North Atlantic Oscillation (NAO) were investigated for the period 1930–2001. The analysis was performed with respect to relationships between precipitation and three different NAO indices (NAOIs) and composite precipitation changes corresponding to the extreme phases of the NAOIs, and individual wet conditions and drought events linked to the extreme NAOI events. Main conclusions of the study can be evaluated as follows:(a) The Ponta Delgada–Reykjavik (PD–R) NAOI is superior among the three NAOIs compared, followed by the Lisbon–Stykkisholmur/Reykjavik NAOI, with regards to its ability to control year-to-year variability in winter precipitation series and composite precipitation conditions corresponding to the extreme NAOI phases in Turkey. (b) Variability of winter precipitation at most stations in Turkey is significantly correlated with variability of the three NAOIs. Negative relationships are stronger over the Marmara, the Mediterranean Transition and the Continental Central Anatolia regions, and the Aegean part of the Mediterranean region. (c) Composite precipitation analysis exhibited an apparent opposite anomaly pattern at the majority of stations between the weak and strong phases of the NAOIs. Composite precipitation means corresponding to the weak NAOI phase are explained mostly by wetter than long-term average conditions, whereas composite precipitation responses to the strong NAOI phase mostly produce drier than long-term average conditions. (d) Composite wet (dry) conditions during the weak (strong) phase of the NAOI are significant at about 32% (69%) of 78 stations for the PD–R NAOI, and about 38% (55%) for the L–S(R) NAOI. The dry signals from the strong NAO phases are stronger and show a larger spatial coherence over Turkey. The significant signals are evident in the west, centre and south of the country. (g) Widespread severe droughts in 1943, 1957, 1973, 1974, 1983, 1989, 1990, 1992, 1993 and 1994, and widespread strong wet conditions in 1940–1942, 1956, 1963, 1966, 1969 and 1970 were linked to the extreme high- and low-index events of at least two NAOIs, respectively.  相似文献   

18.
Rainfall erosivity, which shows a potential risk of soil loss caused by water erosion, is an important factor in soil erosion process. In consideration of the critical condition of soil erosion induced by rainfall in Guangdong Province of southern China, this study analyzed the spatial and temporal variations in rainfall erosivity based on daily rainfall data observed at 25 meteorological stations during the period of 1960–2011. The methods of global spatial autocorrelation, kriging interpolation, Mann–Kendall test, and continuous wavelet transform were used. Results revealed that the annual rainfall erosivity in Guangdong Province, which spatially varied with the maximum level observed in June, was classified as high erosivity with two peaks that occur in spring and summer. In the direction of south–north, mean annual rainfall erosivity, which showed significant relationships with mean annual rainfall and latitude, gradually decreased with the high values mainly distributed in the coastal area and the low values mainly occurring in the lowlands of northwestern Guangdong. Meanwhile, a significant positive spatial autocorrelation which implied a clustered pattern was observed for annual rainfall erosivity. The spatial distribution of seasonal rainfall erosivity exhibited clustering tendencies, except spring erosivity with Moran’s I and Z values of 0.1 and 1.04, respectively. The spatial distribution of monthly rainfall erosivity presented clustered patterns in January–March and July–October as well as random patterns in the remaining months. The temporal trend of mean rainfall erosivity in Guangdong Province showed no statistically significant trend at the annual, seasonal, and monthly scales. However, at each station, 1 out of 25 stations exhibited a statistically significant trend at the annual scale; 4 stations located around the Pearl River Delta presented significant trends in summer at the seasonal scale; significant trends were observed in March (increasing trends at 3 stations), June (increasing trends at 4 stations located in the Beijiang River Basin), and October (decreasing trends at 4 stations) at the monthly scale. In accordance with the mean annual rainfall over Guangdong Province, the mean annual rainfall erosivity showed two significant periodicities of 3–6 and 10–12 years at a confidence level of 95 %. In conclusion, the results of this study provide insights into the spatiotemporal variation in rainfall erosivity in Guangdong Province and support for agrolandscape planning and water and soil conservation efforts in this region.  相似文献   

19.
Hai Lin  Zhiwei Wu 《Climate Dynamics》2012,39(1-2):303-311
Previous studies have shown that climate anomalies over the North Atlantic–Europe (NAE) can influence the Indian summer monsoon (ISM) variability. It is, however, still an outstanding question whether the latter has a significant impact on the former. In this study, observational evidences indicate that the interannual variability of ISM is closely linked to the climate anomalies over NAE. A strong ISM is often associated with significant above normal precipitation over most of western Europe. Meanwhile, positive surface air temperature (SAT) anomalies are usually observed over the Mediterranean, accompanied by below normal SAT in Western Europe during a strong ISM summer. The situation is just opposite during a weak ISM summer. A global primitive equation model is utilized to assess the mechanism of the above observed connection.  相似文献   

20.
The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号