首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王刚  黄娜  蒋宇静 《岩土力学》2014,299(2):497-503
天然岩体在长期地质作用下会生成各种节理裂隙等不连续面,而地下工程结构的稳定性一般取决于这些不连续面的强度。在众多因素中,表面形态对岩石节理面剪切强度具有决定性影响。为了系统研究岩石节理面剪切强度的确定方法,把岩石节理面概化为一系列高度不同的微长方体凸起组成的粗糙表面结构,且微长方体凸起有剪胀破坏和非剪胀破坏两种模式。综合微长方体凸起破坏规律,应用概率密度函数描述节理面表面起伏分布的影响,建立了粗糙节理面随机强度模型,推导了节理面剪切强度理论公式,提出了节理面强度的随机评价方法。基于随机强度模型和评价方法编制Matlab计算程序计算自然粗糙节理面的剪切强度,并将计算结果与试验结果进行比较分析。研究表明:粗糙节理面随机强度模型综合了粗糙节理面表面形态和法向应力对节理剪切强度的影响机制,理论计算值与试验数据吻合良好,可以较好的评价粗糙节理的峰值剪切强度和残余剪切强度。该随机模型可作为进一步深入研究的重要基础,分析结构面的连续剪切过程,建立更完善的节理面强度模型。  相似文献   

2.
We performed a series of laboratory experiments in which elastic waves were transmitted across a simulated fault. Two types of experiments were carried out: (1) Normal Stress Holding Test (NSHT): normal stress was kept constant for about 3 h without shear stress and transmission waves were observed. (2) Shear Stress Increasing Test (SSIT): shear stress was gradually increased until a stick-slip event occurred. Transmission waves were continuously observed throughout the process of stress accumulation. We focused on the change in transmission waves during the application of shear stress and especially during precursory slips.It was found in NSHT that the amplitude of transmission waves linearly increased with the logarithm of stationary contact time. The increase amounted to a few percent after about 3 h. Creep at asperity contacts is responsible for this phenomenon. From a theoretical consideration, it was concluded that the real contact area increased with the logarithm of stationary contact time.We observed in SSIT a significant increase in wave amplitude with shear stress application. This phenomenon cannot be attributed to the time effect observed in NSHT. Instead, it can be explained by the mechanism of “junction growth” proposed by Tabor. Junction growth yields an increase in real contact area. It is required for junction growth to occur that the material in contact is already plastic under a purely normal loading condition. A computer simulation confirmed that this requirement was satisfied in our experiments. We also found that the rate at which the amplitude increased was slightly reduced prior to a stick-slip event. The onset time of the reduction well coincides with the onset of precursory slip. The cause of the reduction is attributed to the reset of stationary contact time due to displacement. This interpretation is supported by the result of NSHT. Taking the time of stationary contact in SSIT into account, we may expect the change in wave amplitude to be, at most, only a few percent. The observed slight reduction in increasing rate is, in this sense, reasonable. The static stiffness of the fault also decreases with precursory slip. It was also found that low frequency waves are a better indicator of precursory slip than high frequency waves. This might suggest that low frequency waves with longer wavelength are a better indicator of average behavior of faults. The problem, however, merits a further investigation. The shifts in phase were also found to be a good indicator of the change in contact state of the fault. The changes in both amplitude and phase of transmission waves are unifyingly understood through the theory of transmission coefficient presented by Pyrak-Nolte et al. Rough surfaces have a tendency to give larger stick-slips than smooth surfaces. The amount of precursory slip is larger for rough surfaces than for smooth surfaces. Although it was confirmed by a computer simulation that rough surfaces have larger contact diameters than smooth surfaces, the rigorous relationship between the surface roughness (contact diameter) and the amount of precursory slips was not established.  相似文献   

3.
陈琛  冷伍明  杨奇  金子豪  聂如松  邱鋆 《岩土力学》2018,39(7):2461-2472
为研究泥皮、粗糙度对桩-土接触面力学特性的影响规律,根据灌注桩成孔后的孔径-深度曲线,应用统计分析法获得了桩侧凸出尺寸和粗糙度的分布频率规律,以此构建了表面光滑和梯形凹槽混凝土板来模拟实际桩侧表面粗糙度。在此基础上,开展了不同泥皮厚度、粗糙度条件下的混凝土-砂土接触面大型直剪试验。其研究结果表明:无泥皮条件下粗糙接触面,其剪切应力-切向位移关系曲线呈软化型;泥皮厚度为5、10 mm条件下,呈硬化型。剪切模量G0.02随泥皮厚度增加而衰减。对光滑混凝土板,其接触面峰值剪切强度和峰值摩擦角随泥皮厚度的增加呈指数关系衰减;对粗糙混凝土板,峰值剪切强度和峰值摩擦角随泥皮厚度的增加近似呈线性衰减。初始泥皮越厚,试验后的泥皮土和泥皮越厚,接触面剪切强度越低。无泥皮条件下粗糙度对接触面峰值剪切强度的影响规律:存在一个临界粗糙度Icr =10 mm,当混凝土板的粗糙度I< Icr时,接触面峰值剪切强度和峰值摩擦角随粗糙度的增大而增大;当I≥Icr时,二者随着接触面粗糙度的增大而减小,泥皮存在会影响改变这一规律。  相似文献   

4.
This paper presents a numerical simulation of S-wave propagation across a rough, filled discontinuity using the universal distinct element code (UDEC). The ability of UDEC to simulate a stress wave across a smooth and planar discontinuity filled with an elastic material is validated through comparisons with analytical solutions. Next, the effect of the plastic deformation of the fill on the wave propagation is investigated. The model is extended to further study S-wave propagation across a filled discontinuity with rough interfaces, which is described using a sawtooth. The transmission coefficient defined by the energy is used to measure the wave attenuation. Finally, a parametric study is conducted to investigate the influences of the filled thickness, asperity angle, and incident amplitude on the transmission waves and transmission coefficients. The asperity angle and filled thickness together determine the transmitted waveform and transmission coefficient. The transmitted wave may be cut off when the incident wave amplitude exceeds a threshold value. The transmission coefficient decreases with a different trend with the incident wave amplitude increasing when the asperity angle varies. Compared with planar discontinuity, a filled discontinuity with rough interfaces is more sensitive to the amplitude of the incident wave. The causes of these phenomena are analyzed in detail. In addition, the deformation of the fill material is strongly related to the wave attenuation.  相似文献   

5.
目前来看,在构筑物与土体表面粗糙度影响土-构筑物接触面间切向冻胀力方面的研究还较少,因此,本研究从川西季节冻土区渠基土-衬砌接触面的切向冻胀力问题出发,着重考虑衬砌表面粗糙度这一因素对接触面间抗剪强度、黏聚力、内摩擦角的影响规律和影响效应,并结合环境温度、含水率及冻结时长,利用正交分析综合探究了4种因素对接触面间峰值抗剪强度影响的相关性和显著性,结果表明:接触面间抗剪强度、黏聚力、内摩擦角随衬砌表面粗糙度变化呈现相同规律,即衬砌表面越粗糙,3项指标随即增大。正交分析中揭示了影响接触面间峰值抗剪强度大小最显著的因素是衬砌粗糙度,其次是环境温度和含水率,冻结时长的影响效应不显著,同时低温、低含水率、较长冻结时长、较高衬砌粗糙程度下的峰值抗剪强度越大。此项结果可为季节冻土区渠系工程防冻胀危害提供理论支撑。  相似文献   

6.
The prime objective of this work is to provide a reference to predict the peak shear strength of rock fractures. The paper studied some shear properties of rock fractures and proposed an empirical formula for the peak shear strength of rock fractures based on 3D morphology parameters. The rock fractures were induced in cylindrical sandstone and marble specimens by means of indirect tension. A rock direct shear apparatus (RDS-200) was adopted to conduct direct shear tests on five groups of rock fractures under different levels of normal load. Before the direct shear test, 3D morphology parameters of rock fracture surfaces were obtained using a 3D optical scanner. By analyses of direct shear test data, the relationships between peak shear strength, peak shear displacement, peak dilatancy angle, residual friction coefficient and peak normal stress were found. According to the evolution trends of peak shear strength and peak dilatancy angle along with the normal stress, an empirical formula was proposed to predict the peak shear strength of rock fractures in both sliding and cutting failure modes considering the 3D morphology parameters of rock fracture surfaces. The empirical formula could be commonly used for different types (sandstone and marble) and grain sizes (powder-grained, fine-grained, medium-grained and coarse-grained) of rock fractures.  相似文献   

7.
Summary A hydro-mechanical testing system, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture, was built to investigate the hydraulic behaviour of rough tension fractures. Laboratory hydraulic tests in linear flow were conducted on rough rock fractures, artificially created using a splitter under various normal and shear loading. Prior to the tests, aperture distributions were determined by measuring the topography of upper and lower fracture surfaces using a laser profilometer. Experimental variograms of the initial aperture distributions were classified into four groups of geostatistical model, though the overall experimental variograms could be well fitted to the exponential model. The permeability of the rough rock fractures decayed exponentially with respect to the normal stress increase up to 5 MPa. Hydraulic behaviours during monotonic shear loading were significantly affected by the dilation occurring until the shear stress reached the peak strength. With the further dilation, the permeability of the rough fracture specimens increased more. However, beyond shear displacement of about 7 to 8 mm, permeability gradually reached a maximum threshold value. The combined effects of both asperity degradation and gouge production, which prohibited the subsequent enlargement of mean fracture aperture, mainly caused this phenomenon. Permeability changes during cyclic shear loading showed somewhat irregular variations, especially after the first shear loading cycle, due to the complex interaction from asperity degradations and production of gouge materials. The relation between hydraulic and mechanical apertures was analyzed to investigate the valid range of mechanical apertures to be applied to the cubic law. Received June 12, 2001; accepted February 26, 2002 Published online September 2, 2002  相似文献   

8.
Summary Direct shear tests were conducted on a granite to granite interface for the purpose of tracing the evolution of frictional resistance as the initially smooth and polished surface wears during continuing shearing displacement. At the moment when sliding on the freshly manufactured interface starts (first slip), the friction angle is very low, between 15° and 20°, but then it increases with displacement rapidly without reaching a peak in the first test (maximum displacement less than 25 mm). Upon repeated shearing of the same surface (without re-finishing), this process of displacement-strengthening continues until a total accumulated displacement of about one half of one meter is reached. At this point, the angle of friction would typically be between 42° and 44°.Once the residual surface was established, the effect of time-related parameters, the duration of stationary contact under constant normal and shear load and variable displacement rate, were investigated. The frictional resistance is shown to increase with decreasing displacement rate and to increase with the duration of stationary contact.At a normal load greater than about one half of one MPa, shear displacement on a residual surface proceeds in an unstable, stick-slip manner. The change from stable to unstable sliding, that can be effected by either decreasing the sliding velocity or increasing the normal load, is not instantaneous, but occurs over a finite amount of displacement.  相似文献   

9.
Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15 × 10−5 to 1.15 × 10−2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.  相似文献   

10.
Landslide often exhibits characteristics of multi-stage destruction in practical engineering. However, the most dangerous slip surface and corresponding minimum safety factor are only concerned in general computing and design, this often leaves security risk. Considering the softening characteristics of geomaterial, a theoretical framework of effective simulation and evaluation of landslide multi-stage destruction is established with FLAC(3D) and Matlab software platform. Taken landslide in low-rent housing area of Dangjiaba in Xunyang county as an example, the process of forming multi-slip surfaces is revealed by progressive evolution of plastic shear strain, plastic tensile strain and shear strain increment and so on. It is shown that time and space sequences are not necessarily corresponding sequence. The temporal sequences of multi-slip surfaces are first-class main slip surface, second-class main slip surface and sub-slip surface; the spatial sequence is first-class master slip surface, sub-slip surface and second-class main slip surface. The number of slip surfaces is equal to the number of tension cracks in collecting on-site. The entry location of first-class main slip surface is in excellent agreement with the tension crack in the frontal part of landslide, but the positions of second-class master slip surface and sub-slip surface have little error with the tension crack on-site. The distribution and magnitude of strength parameters in the slip surfaces gradually change with the development of slip surface from peak strength to residual strength, this is the root reason why the multi-slip surfaces of landslide can be simulated effectively. The evolution of vector sum safety factors according the temporospatial distribution of material parameters in the multi-slip surfaces is obtained. It turns out that there are three different sequences of safety factors in the process of forming the multi-slip surfaces of landslide. It illustrates the active and passive relationships among all slip surfaces in the formation process.  相似文献   

11.
薛海斌  党发宁  尹小涛  雷曼  杨超 《岩土力学》2015,36(11):3235-3242
在实际工程中,滑坡经常呈现出多级破坏的特征,而一般计算和设计中仅关注最危险的滑动面及对应的最小安全系数,这往往遗留安全隐患。在考虑岩土材料软化特性的基础上,借助FLAC3D和Matlab软件平台构建了无需人工干预便可有效模拟与评价滑坡多级破坏的理论框架。以旬阳县党家坝廉租房小区滑坡为例,通过对塑性剪应变、塑性拉应变、剪切应变增量等特征变量的渐进发展规律分析发现:滑坡多级滑动面的形成,其时间和空间顺序并不一定相对应。各级滑动面在时间上按产生的先后顺序依次为第1级主滑面、第2级主滑面、次级滑面;而在空间上按照从前到后的顺序依次为第1级主滑面、次级滑面、第2级主滑面。从计算所得的滑坡最终破坏形态中发现,坡体内部出现的滑动面条数与现场采集的拉裂缝数基本保持一致;第1级主滑面的入口位置与滑坡前缘拉裂缝位置基本吻合;而第2级主滑面及次级滑面的位置与现场勘查到的拉裂缝位置出现偏差。从材料参数的渐进发展规律中发现,滑面上强度参数的分布及大小均随着滑面的产生、发展而逐渐变化,其变化区间为峰值强度到残余强度,这是此方法可以有效模拟多级滑动面形成过程与各级滑动面之间相互影响的核心所在。借助矢量和法成功地实现了基于滑面上强度参数渐进发展规律的安全系数演化过程的确定。通过对安全系数演化过程的分析发现,在滑坡多级滑动面的形成过程中安全系数大小顺序呈现出3种不同的状态,这很好地揭示了各级滑动面在形成过程中的主、被动关系。  相似文献   

12.
The surface morphology of a rock joint is closely related to its mechanical properties. To reasonably characterize a rock surface, two new roughness parameters were proposed in this paper. One is related to the average slope angle of asperities that contribute to the shear strength, and the other reflects the frictional behavior of asperities that is defined as the maximum possible contact area in the shear direction. Taking the standard joint roughness coefficient profiles as example, these two roughness parameters can be applied to describe the directional characteristics of shear strength. Based on their relationships with initial dilation angles, the proposed roughness parameters were incorporated into a peak shear strength criterion. It is shown that the predicted peak shear strength is consistent with experimental data, and there is a power–law relationship. The application range of new roughness parameters was determined, which may facilitate a measurement process.  相似文献   

13.
Rock discontinuities play a crucial and critical role on the deformational and failure behavior of the rock mass. In most investigations, both the surfaces of the rock joints are considered to have same roughness. But, in nature, the walls of a fresh joint is only expected to be complimentary and to have same roughness. Weathered and water percolating rock joint is most likely to develop different surface roughness on the two opposite walls. So, the shear strength and frictional response behavior derived from the single joint roughness coefficient (JRC) assumption cannot be used in such a condition. To address this shortcoming, we have prepared sandstone blocks with different surface roughness and conducted experiments in a tribometer. The static friction, shear stiffness and coefficient-of-friction of the joint surfaces were calculated and their changes with increasing normal load were noted. One of the major findings of this paper is that, shear strength of the joints may not have a direct correlation with the increasing JRC value of the individual joint walls. Hence, some of the joint walls having higher cumulative JRCs were found to show lower shear strength than those with lowers roughness. This is because, the opposing walls of such joints are not anymore complementary and the frictional resistance is completely controlled by the height and contact area of the asperites.  相似文献   

14.
李小春  袁维  白冰  石露 《岩土力学》2014,35(3):847-854
边坡最危险滑动面的搜索方法一直是研究的热点,但边坡内部次级滑动面也可能不满足安全设计要求,因此,考虑边坡多条滑动面的分析方法亦应得到关注。在传统强度折减法中,对边坡整个区域的抗剪强度参数进行折减,此方法仅可得到一个临界滑动面和最小安全系数。提出了一种基于局部强度折减法的多滑面分析方法,即首先定义单元安全系数的概念,并且计算边坡每个单元的安全系数,然后自动搜索出单元安全系数处于不同范围内的单元集合,对各个单元集合的强度参数进行折减计算,即可得到不同安全系数对应的滑动面。通过单台阶和双台阶边坡算例验证了该方法的可行性,结果表明,随着安全系数的增大,潜在滑面的深度和潜在滑动区域亦增大。最后把该方法应用到某隧道进口仰坡的稳定性评价中, 通过该方法得到的多级滑动面与现场监测数据吻合较好。  相似文献   

15.
Rock friction varies as a function of mainly four parameters that are waiting time and velocity of motion between two frictional surfaces, surface roughness and normal stress. In this paper, a study on former two aspects of rock frictional behaviour has been attempted for granitic rock surface. In one experiment, waiting time for which the two surfaces remain in contact is increased from 20 seconds to 18 hours. In the second experiment, waiting time is kept constant for a series of rock slip experiments where the velocity is increased from 10??m/sec to 350??m/sec. The value of critical velocity is obtained from transformation of the stick slip motion to steady motion occurs. The relation of coefficients of dynamic and static friction with increasing velocity of motion is studied and these are used to calculate the frictional constants, namely ??a?? and ??b?? specific to the chosen simulation type.  相似文献   

16.
张平  李宁  李夕兵 《岩土力学》2006,27(Z2):774-778
共面非贯通裂隙的贯通机制对于确定外载下岩质边坡的滑动面位置及滑动面综合抗剪强度至关重要。采用预制共面非贯通裂隙石膏模型试样单轴静动载对比试验,对不同裂隙倾角共面排列裂隙的扩展、贯通过程进行了观测,研究显示:共面非贯通裂隙不同倾角下的贯通模式存在较大差异,裂隙倾角为0o~35o时以裂隙面发生闭合变形为主;45o~65o时裂隙间较易出现剪切型破坏模式;75o~90o预制裂隙面较难产生滑动,裂隙试样主要产生劈裂形式的破坏。动载下预制裂隙试样裂尖翼裂纹及次生共面裂纹起裂后易朝原起裂方向快速发展;易在两预制裂隙内端部产生直接贯通,这与静载下岩桥处的贯通常通过分支裂纹拐折扩展、相连不同。含共面非贯通裂隙试样在裂隙倾角为35o左右时强度呈现最小值,这与贯通性裂隙试样裂隙倾角为60o左右呈现最小值相差较大,这是因为裂隙面摩擦强度没来得及发挥作用所致。因此,含非贯通节理裂隙岩体的综合抗剪强度公式应引入强度发挥系数,以充分考虑岩桥胶结强度与裂隙面摩擦强度不能同步发挥作用的破坏本质。  相似文献   

17.
18.
邓琴  汤华  王东英  秦雨樵  吴振君 《岩土力学》2018,39(11):4109-4116
多阶边坡除了最危险滑面需要关注,每级台阶的潜在滑面及其他不满足规范要求的滑面亦需要得到重视。以双台阶边坡和复杂多台阶边坡为例,基于应变软化理论,利用FLAC3D软件分析边坡的剪应变发展规律,根据剪应变的集中带获取边坡的多个潜在滑面。分析滑面的剪入、剪出和滑面中部点的强度参数变化规律,并结合矢量和法分析滑面在应变软化过程中安全系数的演化规律。研究结果表明:采用该方法可获取边坡的最危险滑面及次级滑动面;随着软化的发展,滑面上点的强度参数从峰值强度逐渐降低至残余强度,然而演化的速度不同;随着应变软化过程的发展,所有滑面的安全系数均逐渐降低,最后趋于一个定值。  相似文献   

19.
Analysis and research results show that the sliding plane of Jiudingshan landslide is along the weak intercalated layer (clay-filled) in the limestone and the sliding block is separated by the tension crack on the slope crest. The earlier study results show that for the rough, ups and downs structural plane, when i is greater than 2.0, the shear strength of the structural surface is intensely close to the strength of the filling. By the earlier theory, this failure must be through the clay filling. In this study, the failure is back-analyzed and the shear strength of the infilling is tested by the laboratory direct shear tests for which samples were retrieved in the field. The failure cannot be explained by the laboratory results of shear strength parameters. To simulate the field conditions, the real strength parameters of sliding surface are measured by the in situ shear tests for the weak intercalated layer. By the in situ tests, it is shown that the failure initiates along the contacts between the clay infilling and the limestone boundaries, but not through the clay itself. Though the contact surface is the interface of the clay–limestone, the cohesion is not 0 and it is not negligible too.  相似文献   

20.
Contact between stiff structural elements and soil is encountered in many applications in geotechnical engineering. Modelling of such contact is challenging as it often involves impact that would lead to large deformation and failure of the soil. The Material Point Method (MPM) is a mesh‐free method that has been applied to simulate such phenomena. However, the frictional contact algorithm commonly used in MPM only supports Coulomb friction and cannot model fully or partially rough contact conditions in terms of geotechnical engineering. Moreover, because of very different stiffness of contacting materials, the contact force predicted by the previous frictional contact algorithms usually suffers from severe oscillation when applied in structure–soil interaction. This paper presents a new contact algorithm, termed Geo‐contact, designed for geotechnical engineering. In Geo‐contact, a penalty function is incorporated to reduce the oscillation in contact computation, and a limited shear stress is specified along the contact interface. The proposed Geo‐contact algorithm has been implemented to simulate smooth, partially rough and rough contact in typical large deformation penetration problems. The resistance–displacement curves obtained using the Geo‐contact are compared with analytical solutions of limit analysis and large deformation finite element results to verify the accuracy and robustness of the proposed contact algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号