首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This letter points out that the values of ‘critical-acceleration’ of MOND, and the ‘accelerated-expansion’ of the universe are just two of the fourteen strikingly equal values of accelerations recurring in different physical situations. Some of them could be explained by a new law of equality of potential-energy and energy-of-mass of reasonably-independent systems (Tank in Astrophys. Space Sci. 330:203–205, 2010; Tank in Adv. Stud. Theor. Phys. 5:45–55, 2011). This new conservation-law, of equality of potential-energy, energy-of-mass and ‘kinetic-energy’ may be a clue to understand MOND, and the ‘accelerated-expansion’ of the universe. Alternative expressions for the cosmological red-shift, the ‘critical-acceleration’ of MOND and Newton’s law of universal gravitation are also presented for comparison of three different accelerations.  相似文献   

2.
This study is emphasized to explore the validity of generalized second law of thermodynamics in the context of non-linear electrodynamics (magnetic effects only) with Brans-Dicke chameleon scalar field as dark energy candidate. For this purpose, we consider FRW universe model with perfect fluid matter contents. We evaluate matter energy density and magnetic field by taking interacting and non-interacting cases of magnetic field and matter as well as the power law ansatz for scalar field. The validity of this law is discussed by using the first law of thermodynamics for four different horizons: Hubble, apparent, particle and event horizons. We conclude that this law may hold for all four horizons with small positive red-shift when chameleon mechanism is taken into account in Brans-Dicke gravity. Finally, we investigate the statefinders in order to check the viability of the model.  相似文献   

3.
An attempt is made to study the concept of “black holes” from the standpoint of the axioms of modern physics. It is found that matter which lies inside a Schwarzschild sphere must disappear, both as a source of electromagnetic waves and as a source of a gravitational field. To resolve this paradox a hypothesis is proposed according to which the accelerated expansion of the universe interacts with atomic nuclei in such a way as to transfer a positive energy to every nucleus in accordance with its volume. The influx of energy into a nucleus gradually neutralizes its binding energy, so that there is an increase in the mass of the nucleus, as well as of its component nucleons. This mechanism suggests that during the inverse process, when matter is compressed, the opposite phenomenon should be observed with a release of binding energy, and the average mass of the nucleons involved in this process should decrease; that is, part of the mass of the material is simply converted into energy.  相似文献   

4.
5.
6.
7.
This study set out to examine the effect of anisotropy on the various dark energy models by using the observational data, including the Sandage-Loeb test, Strongly gravitationally lensing, observational Hubble data, and Baryon Acoustic Oscillations data. In particular, we consider three cases of dark energy models: the cosmological constant model, which is most favored by current observations, the wCDM model where dark energy is introduced with constant w equation of state parameter and in Chevalier-Polarski-Linder parametrization where ω is allowed to evolve with redshift. With an anisotropy framework, a maximum likelihood method to constrain the cosmological parameters was implemented. With an anisotropic universe, we also study the behavior of different cosmological parameters such as Hubble parameter, EoS parameter, and deceleration parameter of dark energy models mentioned. The results indicate that the Bianchi type I model for the dark energy models are consistent with the combined observational data.  相似文献   

8.
9.
10.
11.
The relativistic transfer equation for polarised radiation is solved in an axisymmetric Bianchi type I universe. Previous results concerning the linear polarisation induced in the cosmic microwave background radiation by Thomson scattering in an anisotropically expanding universe are confirmed. Work partly done at the Osservatorio Astrofisico, Catania (Italia).  相似文献   

12.
13.
We inquire the phenomena of clustering of galaxies in an expanding universe from a theoretical point of view on the basis of thermodynamics and correlation functions. The partial differential equation is developed both for the point mass and extended mass structures of a two-point correlation function by using thermodynamic equations in combination with the equation of state taking gravitational interaction between particles into consideration. The unique solution physically satisfies a set of boundary conditions for correlated systems and provides a new insight into the gravitational clustering problem.  相似文献   

14.
15.
16.
17.
The propagation of an instantaneous burst of nonpolarized isotropic radiation from the time of its onset at some redshift z 0 to the time of its recording at the present epoch is considered within the framework of a flat cosmological model. Thomson (Rayleigh) scattering by free electrons is believed to be the only source of opacity. The spatial distributions of the mean (over the directions) radiation intensity as well as the angular distributions of the radiation intensity and polarization at various distances from the burst center have been constructed. The mean intensity profile normalized to the total number of photons emitted during the burst is shown to depend weakly on the initial conditions (the burst time z 0, the width and shape of the initial radiation distribution) at fairly high z 0 (≥1400). As regards the angular intensity and polarization distributions, they turn out to be rather narrow (3–10 arcmin), while the polarization can reach 70%. On average, the expected polarization can be about 15%.  相似文献   

18.
19.
In this article we want to answer the cosmologically relevant question what, with some good semantic and physical reason, could be called the massM u of an infinitely extended, homogeneously matter‐filled and expanding universe. To answer this question we produce a space‐like sum of instantaneous cosmic energy depositions surrounding equally each spacepoint in the homogeneous universe. We calculate the added‐up instantaneous cosmic energy per volume around an arbitrary space point in the expanding universe. To carry out this sum we use as basic metrics an analogy to the inner Schwarzschild metric applied to stars, but this time applied to the spacepoint‐related universe. It is then shown that this leads to the added‐up proper energy within a sphere of a finite outer critical radius defining the point‐related infinity. As a surprise this radius turns out to be reciprocal to the square root of the prevailing average cosmic energy density. The equivalent mass of the universe can then also be calculated and, by the expression which is obtained here, shows a scaling with this critical radius of this universe, a virtue of the universe which was already often called for in earlier works by E. Mach, H. Thirring and F. Hoyle and others. This radius on the other hand can be shown to be nearly equal to the Schwarzschild radius of the so‐defined mass M u of the universe. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper we have studied the anisotropic and homogeneous Bianchi type-I universe filled with interacting Dark matter and Holographic dark energy. Here we discussed two models, in first model the solutions of the field equations are obtained for constant value of deceleration parameter where as in the second model the solutions of the field equations are obtained for special form of deceleration parameter. It is shown that for suitable choice of interaction between dark matter and holographic dark energy there is no coincidence problem (unlike ΛCDM). Also, in all the resulting models the anisotropy of expansion dies out very quickly and attains isotropy after some finite time. The Statefinder diagnostic is applied to both the models in order to distinguish between our dark energy models with other existing dark energy models. The physical and geometrical aspects of the models are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号