首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study, the existence of periodic orbits around a fixed homogeneous cube is investigated, and the results have powerful implications for examining periodic orbits around non-spherical celestial bodies. In the two different types of symmetry planes of the fixed cube, periodic orbits are obtained using the method of the Poincaré surface of section. While in general positions, periodic orbits are found by the homotopy method. The results show that periodic orbits exist extensively in symmetry planes of the fixed cube, and also exist near asymmetry planes that contain the regular Hex cross section. The stability of these periodic orbits is determined on the basis of the eigenvalues of the monodromy matrix. This paper proves that the homotopy method is effective to find periodic orbits in the gravity field of the cube, which provides a new thought of searching for periodic orbits around non-spherical celestial bodies. The investigation of orbits around the cube could be considered as the first step of the complicated cases, and helps to understand the dynamics of orbits around bodies with complicated shapes. The work is an extension of the previous research work about the dynamics of orbits around some simple shaped bodies, including a straight segment, a circular ring, an annulus disk, and simple planar plates.  相似文献   

2.
In this paper we study a particular four-body problem: three bodies revolve around their center of mass in circular orbits under the influence of their mutual gravitational attraction, while a fourth body moves in the plane defined by the three bodies but non influencing their motion. The linear stability of the eight equilibrium points is studied, and it is found that it depends on the values of the masses.  相似文献   

3.
The equilibrium points of the gravitational potential field of minor celestial bodies, including asteroids, comets, and irregular satellites of planets, are studied. In order to understand better the orbital dynamics of massless particles moving near celestial minor bodies and their internal structure, both internal and external equilibrium points of the potential field of the body are analyzed. In this paper, the location and stability of the equilibrium points of 23 minor celestial bodies are presented. In addition, the contour plots of the gravitational effective potential of these minor bodies are used to point out the differences between them. Furthermore, stability and topological classifications of equilibrium points are discussed, which clearly illustrate the topological structure near the equilibrium points and help to have an insight into the orbital dynamics around the irregular-shaped minor celestial bodies. The results obtained here show that there is at least one equilibrium point in the potential field of a minor celestial body, and the number of equilibrium points could be one, five, seven, and nine, which are all odd integers. It is found that for some irregular-shaped celestial bodies, there are more than four equilibrium points outside the bodies while for some others there are no external equilibrium points. If a celestial body has one equilibrium point inside the body, this one is more likely linearly stable.  相似文献   

4.
We numerically study a version of the synchronous circular restricted three-body problem, where an infinitesimal mass body is moving under the Newtonian gravitational forces of two massive bodies. The primary body is an oblate spheroid while the secondary is an elongated asteroid of a combination of two equal masses forming a rotating dipole which is synchronous to the rotation of the primaries of the classic circular restricted three-body problem. In this paper, we systematically examine the existence, positions, and linear stability of the equilibrium points for various combinations of the model's parameters. We observe that the perturbing forces have significant effects on the positions and stability of the equilibrium points as well as the regions where the motion of the particle is allowed. The allowed regions of motion as determined by the zero-velocity surface and the corresponding isoenergetic curves as well as the positions of the equilibrium points are given. Finally, we numerically study the binary system Luhman-16 by computing the positions of the equilibria and their stability as well as the allowed regions of motion of the particle. The corresponding families of periodic orbits emanating from the collinear equilibrium points are computed along with their stability properties.  相似文献   

5.
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.  相似文献   

6.
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.  相似文献   

7.
This paper examines the effects of triaxiality of both the primaries on the position and stability of the oblate infinitesimal mass in the neighborhood of triangular equilibrium points in the framework of Elliptical restricted three body problem. We have found the solutions for the locations of triangular equilibrium points. We have investigated the stability of infinitesimal mass around the triangular equilibrium points.It is observed that the infinitesimal motion around triangular equilibrium points are stable under certain condition with respect to triaxiality of primaries. We have applied the method of averaging used by Grebenivok, throughout the analysis of the stability of the infinitesimal mass around the triangular equilibrium points. We have exploited simulation technique using MATLAB 15 to analyze the stability of the system. The critical mass ratio depends on the triaxiality, oblateness, semi- major axis and eccentricity of the elliptical orbits.  相似文献   

8.
The orbits of fictitious bodies around Jupiter’s stable equilibrium points L 4 and L 5 were integrated for a fine grid of initial conditions up to 100 million years. We checked the validity of three different dynamical models, namely the spatial, restricted three body problem, a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of this investigation was to determine the size of the regions of motion around the equilibrium points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit. Whereas for small inclinations (up to i=20°) the stable regions are almost equally large, for moderate inclinations the size shrinks quite rapidly and disappears completely for i>60°. Additionally, we found a difference in the dynamics of orbits around L 4 which – according to the LCE – seem to be more stable than the ones around L 5.  相似文献   

9.
Orbits and manifolds near the equilibrium points around a rotating asteroid   总被引:6,自引:0,他引:6  
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.  相似文献   

10.
A quantitative study of periodic orbits and particle trapping near them in the gravitational field of a uniformly rotating homogeneous solid parallelepiped is made. It is found that particle trapping leads to the possibility of formation of ring-like structures around the parallelepiped and blob-like concentrations around the equilibrium points of the parallelepiped.  相似文献   

11.
12.
The orbits about Lagrangian equilibrium points are important for scientific investigations. Since, a number of space missions have been completed and some are being proposed by various space agencies. In light of this, we consider a more realistic model in which a disk, with power-law density profile, is rotating around the common center of mass of the system. Then, we analyze the periodic motion in the neighborhood of Lagrangian equilibrium points for the value of mass parameter $0<\mu\leq\frac{1}{2}$ . Periodic orbits of the infinitesimal mass in the vicinity of equilibrium are studied analytically and numerically. In spite of the periodic orbits, we have found some other kind of orbits like hyperbolic, asymptotic etc. The effects of radiation factor as well as oblateness coefficients on the motion of infinitesimal mass in the neighborhood of equilibrium points are also examined. The stability criteria of the orbits is examined with the help of Poincaré surfaces of section (PSS) and found that stability regions depend on the Jacobi constant as well as other parameters.  相似文献   

13.
Several families of the planar general three-body problem for fixed values of the three masses are found, in a rotating frame of reference, where the mass of two of the bodies is small compared to the mass of the third body. These families were obtained by the continuation of a degenerate family of periodic orbits of three bodies where two of the bodies have zero masses and describe circular orbits around a third body with finite mass, in the same direction.The above families represent planetary systems with the body with the large mass representing the Sun and the two small bodies representing two planets or comets. One section of a family is shown to represent the Jupiter family of comets and also a model for the Sun-Jupiter-Saturn system is found.The stability analysis revealed that stability exists for small masses and small eccentricities of the two planets. Planetary systems with relatively large masses and eccentricities are proved to be unstable. In particular, the Jupiter family of comets, for small masses of the two small bodies, and the Sun-Jupiter-Saturn system are proved to be stable. Also, it was shown that resonances are not necessarily associated with instabilities.  相似文献   

14.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   

15.
A method is developed to study the stability of periodic motions of the three-body problem in a rotating frame of reference, based on the notion of surface of section. The method is linear and involves the computation of a 4×4 variational matrix by integrating numerically the differential equations for time intervals of the order of a period. Several properties of this matrix are proved and also it is shown that for a symmetric periodic motion it can be computed by integrating for half the period only.This linear stability analysis is used to study the stability of a family of periodic motions of three bodies with equal masses, in a rotating frame of reference. This family represents motion such that two bodies revolve around each other and the third body revolves around this binary system in the same direction to a distance which varies along the members of the family. It was found that a large part of the family, corresponding to the case where the distance of the third body from the binary system is larger than the dimensions of the binary system, represents stable motion. The nonlinear effects to the linear stability analysis are studied by computing the intersections of several perturbed orbits with the surface of sectiony 3=0. In some cases more than 1000 intersections are computed. These numerical results indicate that linear stability implies stability to all orders, and this is true for quite large perturbations.  相似文献   

16.
In this paper we study the dynamics of a massless particle around the L 1,2 libration points of the Earth–Moon system in a full Solar System gravitational model. The study is based on the analysis of the quasi-periodic solutions around the two collinear equilibrium points. For the analysis and computation of the quasi-periodic orbits, a new iterative algorithm is introduced which is a combination of a multiple shooting method with a refined Fourier analysis of the orbits computed with the multiple shooting. Using as initial seeds for the algorithm the libration point orbits of Circular Restricted Three Body Problem, determined by Lindstedt-Poincaré methods, the procedure is able to refine them in the Solar System force-field model for large time-spans, that cover most of the relevant Sun–Earth–Moon periods.  相似文献   

17.
We locate and examine the stability of the ‘out of plane’ equilibrium points, L 6,7 of an infinitesimal body in the field of stellar-oblate binary systems moving in elliptic orbits around their common center of mass. Their positions and stability depend on the oblateness as well as radiation coefficients of the primaries and the eccentricity of their orbits. A numerical application of this problem for the systems: Gamma Leporis and Altair are given.  相似文献   

18.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

19.
This paper studies the existence and stability of non-collinear equilibrium points in the elliptic restricted four body problem with bigger primary as a source of radiation and other two primaries having equal masses as oblate spheroid. In the elliptic restricted four body problem, three of the bodies are moving in elliptical orbit around their common centre of mass fixed at the origin of the coordinate system, while the fourth one is infinitesimal. Three pairs of non-collinear points are obtained symmetric with respect to x-axis. We found the equilibrium points are stable in linear sense. We also investigate the pulsating zero velocity surfaces and basin of attraction for varying value of oblateness coefficient and radiation pressure parameter.  相似文献   

20.
We consider the problem of the motion of a zero-mass body in the vicinity of a system of three gravitating bodies forming a central configuration.We study the case where two gravitating bodies of equal mass lie on the same straight line and rotate around the central body with the same angular velocity. Equations for calculating the equilibrium positions in this system have been derived. The stability of the equilibrium points for a system of three gravitating bodies is investigated. We show that, as in the case of libration points for two bodies, the collinear points are unstable; for the triangular points, there exists a ratio of the mass of the central body to the masses of the extreme bodies, 11.720349, at which stability is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号