首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of dust-acoustic solitary waves in a warm dusty plasma are analyzed by using the hydrodynamic model for massive dust grains, electrons, ions, and streaming ion beam. For this purpose, Korteweg-de Vries (KdV) equation for the first-order perturbed potential and linear inhomogeneous KdV-type equation for the second-order perturbed potential have been derived and their analytical solutions are presented. In order to show the characteristics of the dust-acoustic solitary waves are influenced by the plasma parameters, the relevant numerical analysis of the KdV and linear inhomogeneous KdV-type equations are obtained. The dust-acoustic solitary waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of polar jets with the interstellar medium, which is known as Herbig-Haro objects.  相似文献   

2.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   

3.
The nonlinear properties of solitary waves structure in a hot dusty plasma consisting of isothermal hot electrons, non isothermal ions and high negatively charged massive dust grains, are reported. A modified Korteweg-de Vries equation (modified KdV), which admits a solitary waves solution for small but finite amplitude, is derived using a reductive perturbation theory. A nonisothermal ions distribution provides the possibility of coexistence of amplitude rarefactive as well as compressive solitary waves. On the other hand, consideration of a critical ions density gives a stationary solution of solitary waves and the dynamics of small but finite amplitude of solitary waves is governed by Korteweg-de Vries equation (KdV). The properties of solitary waves in the two cases are discussed.  相似文献   

4.
Nonlinear properties of the dust acoustic (DA) solitary waves in a dusty plasma consisting of negatively variable-charged dust particles, vortex-like distributed ions and two-temperature isothermal electrons are reported. A reductive perturbation theory has been used to derive a modified Korteweg-de Vries (mKdV) equation for the first-order perturbed potential and a linear inhomogeneous mKdV-type equation for the second-order perturbed potential. The renormalization method is used to obtain stationary solutions of these coupled equations. The modifications in the amplitude and width of the solitary wave structure due to the inclusion of two different types of isothermal electrons, external oblique magnetic field, higher-order nonlinearity, and vortex-like distributed ions are investigated. Also a method based on energy consideration was used to obtain the stability condition. Moreover, the numerical results are applied to investigate some nonlinear characteristics of the DA solitary waves.  相似文献   

5.
The basic features of planar and nonplanar time-dependent dust-ion-acoustic (DIA) solitary waves (SWs) and double layers (DLs) have been studied in an unmagnetized dusty plasma system consisting of positively and negatively charged dust, Boltzmann distributed ions and superthermal electrons (represented by kappa distribution). Using the reductive perturbation technique (RPT) we have derived modified Gardner (MG) equation, which gives information beyond the Korteweg-de Vries (KdV) limits (corresponding to the vanishing of nonlinear coefficient of the KdV equation). It is seen that the properties of nonplanar DIA SWs and DLs are significantly differs as the value of spectral index kappa (κ) changes. The present investigation may have relevance in the study of propagation of DIA waves in space and laboratory plasmas.  相似文献   

6.
The formation and propagation of dust-acoustic (DA) solitary and rogue waves are studied in a non-relativistic degenerate Thomas-Fermi thermal dusty plasma incorporating transverse velocity perturbation effects. The electrons and ions are described by the Thomas-Fermi density distributions, whereas the dust grains are taken as dynamic and classical. By using the reductive perturbation technique, the cylindrical Kadomtsev-Petviashvili (CKP) equation is derived, which is then transformed into a Korteweg-deVries (KdV) equation by using appropriate variable transformations. The latter admits a solitary wave solution. However, when the carrier waves frequency is much smaller than the dust plasma frequency, the DA waves evolve into the nonlinear modulation instability, generating modulated wave packets in the form of Rogue waves. For the study of DA-rogue waves, the KdV equation is transformed into a self-focusing nonlinear Schrödinger equation. The variation of dust temperature and the electron density affects the nonlinearity and dispersion coefficients which suppress the amplitudes of the DA solitary and rogue waves. The present results aim to describe the nonlinear electrostatic excitations in astrophysical degenerate dense plasma.  相似文献   

7.
Effect of nonthermality of ions on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains have been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Korteweg-de Vries (KdV) equation. Moreover, the energy of two temperatures charged dusty grains were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments.  相似文献   

8.
Our objective here is to investigate a strongly coupled dusty plasma system with the presence of polarization force (PF). This plasma consists of superthermal electrons, Maxwellian ions, and negatively charged dust grains. The nonlinear propagation of dust-acoustic (DA) waves in such dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The Burgers’ and K-dV equations have been derived to and numerically analyzed. It has been found that the dust-acoustic shock and solitary waves exist associated with a negative potential only, and that the effect of the dust fluid temperature significantly modifies the basic properties (amplitude and width) of such nonlinear waves’ potential structures. We hope that the results of our present investigation should help us in understanding the localized electrostatic disturbances in space and laboratory strongly coupled dusty plasmas with superthermal electrons and polarization force.  相似文献   

9.
The nonlinear properties of solitary waves structure in a hot magnetized dusty plasma consisting of a negatively charged, extremely massive hot dust fluid, positively charged hot ion fluid and vortex-like distributed electrons, are reported. A modified Korteweg de Vries equation (mKdV) which admits a solitary wave solution for small but finite amplitude is derived using a reductive perturbation theory. The modifications in the amplitude and width of the solitary wave structures due to the inclusion of an external magnetic field and dust and ions temperature are investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The properties of propagation of small amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Korteweg-de Vries (KdV) equation with finite amplitude is derived using a reductive perturbation method. From the solitary solutions of KdV equation, the combined effects of nonextensivity and density ratio are studied on characteristics of ion acoustic (IA) solitary waves. Positive as well as negative polarity solitons exist. Since singularity exists for A=0 so we have also derived modified Korteweg de Vries (mKdV) equation to study the solitonic solution for critical values of physical parameters (q,f,σ). The nonextensivity of electrons (via q) and density ratio of electrons and ions (via f) and temperature ratio (σ) significantly influence the characteristics of ion acoustic solitary structures.  相似文献   

11.
In the present paper, the characteristics of the head-on collision between two dust-acoustic solitary waves (DASWs) in an adiabatic dusty plasma consisting of variable negatively charged dust grains, isothermal electrons and two-temperature isothermal ions in the presence of an external oblique magnetic field are investigated. Using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the head-on collision of two solitary waves are derived. The effects of the magnetic field and its obliqueness, two different type of isothermal ions and the dust particles adiabaticity are discussed. It is found that these factors significantly affect the phase shifts.  相似文献   

12.
The nonlinear properties of small amplitude dust-acoustic solitary waves (DAWs) in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. The effects of the presence of charged hot and cold dust grains on the nature of DAWs were discussed. Moreover, the energy of two temperatures charged dusty grains were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments.  相似文献   

13.
Nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma, consisting of negatively charged mobile dust, Maxwellian ions and two distinct temperature nonextensive electrons (following nonextensive q-distribution each), has been studied and analyzed by deriving and solving the Korteweg-de-Vries (K-dV) equation. According to the outcomes of the investigation, the basic characteristics of the DA solitary profiles are found to be strongly modified by the external magnetic field, nonextensivity of the electrons and the respective number densities of the two species of electrons. The results of this investigation can be applied in both laboratory and astrophysical plasma scenarios for understanding the basic features of the localized electrostatic dust-acoustic solitary waves (DASWs).  相似文献   

14.
Electron acoustic blow up solitary waves and periodic waves are studied in a classical unmagnetized plasma containing cold electron fluid, kappa distributed hot electrons and stationary ions. We obtain Korteweg-de Vries (KdV) equation for electron acoustic waves (EAWs) using the reductive perturbation technique (RPT). Applying bifurcation theory of planar dynamical systems to the obtained KdV equation, we prove the existence of electron acoustic blowup solitary and periodic wave solutions. Depending on different physical parameters, two types of exact explicit solutions of the mentioned waves are derived. Our model may be applied to explain blow up solitary and periodic wave features that may occur in the planetary magnetosphere and the plasma sheet boundary layer.  相似文献   

15.
Propagation of nonlinear dust-acoustic waves in a magnetized collisionless plasma having positively, negatively charged dust grains and nonextensive distributed electrons and ions has been investigated. A reductive perturbation method is used to obtain a nonlinear Korteweg-de Vries (KdV) equation describing the model. The dynamics of the modulational instability gives rise to the formation of rogue waves that is described by a nonlinear Schrödinger equation. The dependence of rogue waves profiles on positive and negative charged dust cyclotron frequencies, nonextensive parameters of electrons and ions is investigated numerically. The result of the present investigation may be applicable to some plasma environments, such as cometary tails and upper mesosphere.  相似文献   

16.
《Planetary and Space Science》2007,55(14):2192-2202
Nonlinear propagating dust-acoustic solitary waves (DASWs) in a warm magnetized dusty plasma containing different size and mass negatively charged dust particles, isothermal electrons, high- and low-temperature ions are investigated. For this purpose, a reasonable normalization of the hydrodynamic and Poisson equations is used to derive the Zakharov–Kuznetsov (ZK) equation for the first-order perturbed potential. As the wave amplitude increases, the width and the velocity of the solitons deviate from the prediction of the ZK equation, i.e., the breakdown of the ZK approximation. To describe the soliton of larger amplitude, a linear inhomogeneous Zakharov-Kuznetsov-type (ZK-type) equation for the second-order perturbed potential is derived. Stationary solutions of both equations are obtained using the renormalization method. Numerically, the effect of power law distribution on the higher-order corrections is examined. It is found that the soliton amplitude in case of power law distribution is smaller than that of monosized dust grains. The higher-order corrections play a role to reduce the strength of the nonlinearity for power law distribution case. The relevance of the present investigation to Saturn's F-ring and laboratory experiment is discussed.  相似文献   

17.
The propagation of nonlinear electron-acoustic waves (EAWs) in an unmagnetized collisionless plasma system consisting of a cold electron fluid, superthermal hot electrons and stationary ions is investigated. A reductive perturbation method is employed to obtain a modified Korteweg–de Vries (mKdV) equation for the first-order potential. The small amplitude electron-acoustic solitary wave, e.g., soliton and double layer (DL) solutions are presented, and the effects of superthermal electrons on the nature of the solitons are also discussed. But the results shows that the weak stationary EA DLs cannot be supported by the present model.  相似文献   

18.
The effects of dust polarity and superthermal electrons are incorporated in the study of dust ion-acoustic (DIA) solitary waves (SWs) as well double layers (DLs) in a dusty plasma containing warm adiabatic ions, superthermal electrons, and arbitrarily (positively or negatively) charged immobile dust. Based on the energy-like integral equation, a new relationship between the localized electrostatic disturbances and dust polarity is derived. It is shown that there exists rarefactive SWs and DLs with qualitatively different structures in a way that depends on the population of superthermal electrons. As the electrons evolve their thermodynamic equilibrium, the localized structures are found with larger amplitude. It is also found that their amplitude increases (decreases) with the increase in the negative (positive) dust number density.  相似文献   

19.
This theoretical investigation has been made on dust-acoustic (DA) waves containing nonextensivity of electrons being two different temperatures, negatively charged dust grains, and Maxwellian ions. The Zakharov-Kuznetsov (Z-K) equation has been derived and numerically solved to analysis the basis features. It is observed that the characteristics of the DA solitary waves (DASWs) are significantly modified by the external magnetic field with the different temperatures for electrons followed by the nonextensive distribution. The results obtained from this analysis can be employed in understanding the nature of plasma waves both in laboratory and space plasma system.  相似文献   

20.
A rigorous theoretical investigation has been made of obliquely propagating dust-acoustic solitary structures in a cold magnetized two-ion-temperature dusty plasma consisting of a negatively charged, extremely massive, cold dust fluid and ions of two different temperatures. The reductive perturbation method has been employed to derive the Korteweg-de Vries (K-dV) equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the presence of second component of ions modifies the nature of dust-acoustic solitary structures and may allow rarefactive dust-acoustic solitary waves (solitary waves with density dip) to exist in such a dusty plasma system. The effects of obliqueness and external magnetic field on the properties of these dust-acoustic solitary structures are also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号