首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied a modified version of the classical restricted three-body problem (CR3BP) where both primaries are considered as oblate spheroids and are surrounded by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effects of oblateness of both primaries up to zonal harmonic J 4; together with gravitational potential from the circular cluster of material points on the existence and linear stability of the triangular equilibrium points. It is found that, the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio affected by the oblateness up to J 4 of the primaries and potential from the circular cluster of material points. The coefficient J 4 has stabilizing tendency, while J 2 and the potential from the circular cluster of material points have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near oblate bodies surrounded by a circular cluster of material points.  相似文献   

2.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

3.
We consider the motion of a test particle around a triaxial primary and an oblate companion orbiting each other in elliptic orbits about their common barycenter in the neighborhood of triangular libration points. The positions and stability of these points are influenced by the triaxiality and oblateness of the primary and secondary, and by the semi-major axis and eccentricity of the orbits. The triangular points are stable for 0<μ<μ c ; where μ is the mass ratio (μ≤1/2) and μ c is the critical mass value influenced by the eccentricity, oblateness, semi major axis and triaxiality factors. The size of the region of stability increases with decreasing values of triaxiality and oblateness. An application of the results obtain to double neutron star binaries results show that the positions and stability of the triangular points of PSR J1518+4904, PSR B1534+12, PSR B1914+16 and PSR B2127+11c are affected by the parameters in the systems’ dynamics.  相似文献   

4.
This paper deals with the existence of triangular points and their linear stability when the primaries are oblate spheroid and sources of radiation considering the effect of oblateness up to 10?6 of main terms in the restricted three-body problem; we see that the locations of the triangular points are affected by the oblateness of the primaries and solar radiation pressure. It is further seen that these points are stable for 0 ≤ μ ≤μ c ; and unstable for μ c  ≤ μ ≤1/2; where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness and radiation repulsive forces such that $ \mu_{c} \in (0,1/2) $ ; in addition to this an algorithm has been constructed to calculate the critical mass value.  相似文献   

5.
We have investigated an improved version of the classic restricted three-body problem where both primaries are considered oblate and are enclosed by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effect on the number and on the linear stability of the equilibrium locations of the small particle due to both, the primaries’ oblateness and the potential created by the circular cluster. We have drawn the zero-velocity surfaces and we have found that in addition to the usual five Lagrangian equilibrium points of the classic restricted three-body problem, there exist two new collinear points L n1,L n2 due to the potential from the circular cluster of material points. Numerical investigations reveal that with the increase in the mass of the circular cluster of material points, L n2 comes nearer to the more massive primary, while L n1 moves away from it. Owing to oblateness of the bodies, L n1 comes nearer to the more massive primary, while L n2 moves towards the less massive primary. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio influenced by oblateness of the primaries and the potential from the circular cluster of material points. The oblateness and the circular cluster of material points have destabilizing tendency.  相似文献   

6.
This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0<μ<μ c and unstable for $\mu_{c}\le\mu\le\frac{1}{2}$ , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.  相似文献   

7.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for \(\mu_{c}\le\mu <\frac{1}{2}\), where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

8.
This paper investigates the motion of an infinitesimal body in the generalized restricted three-body problem. It is generalized in the sense that both primaries are radiating, oblate bodies, together with the effect of gravitational potential from a belt. It derives equations of the motion, locates positions of the equilibrium points and examines their linear stability. It has been found that, in addition to the usual five equilibrium points, there appear two new collinear points L n1, L n2 due to the potential from the belt, and in the presence of all these perturbations, the equilibrium points L 1, L 3 come nearer to the primaries; while L 2, L 4, L 5, L n1 move towards the less massive primary and L n2 moves away from it. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the oblateness and radiation of the primaries and potential from the belt, all of which have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near the oblate, radiating binary stars systems surrounded by a belt.  相似文献   

9.
In this paper we have studied the locations and stability of the Lagrangian equilibrium points in the restricted three-body problem under the assumption that both the primaries are finite straight segments. We have found that the triangular equilibrium points are conditional stable for 0<μ<μ c , and unstable in the range μ c <μ≤1/2, where μ is the mass ratio. The critical mass ratio μ c depends on the lengths of the segments and it is observed that the range of μ c increases when compared with the classical case. The collinear equilibrium points are unstable for all values of μ. We have also studied the regions of motion of the infinitesimal mass. It has been observed that the Jacobian constant decreases when compared with the classical restricted three-body problem for a fixed value of μ and lengths l 1 and l 2 of the segments. Beside this we have found the numerical values for the position of the collinear and triangular equilibrium points in the case of some asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida and checked the linear stability of stationary solutions of these asteroids systems.  相似文献   

10.
This paper deals with the existence of libration points and their linear stability when the more massive primary is radiating and the smaller is an oblate spheroid. Our study includes the effects of oblateness of $\bar{J}_{2i}$ (i=1,2) with respect to the smaller primary in the restricted three-body problem. Under combining the perturbed forces that were mentioned before, the collinear points remain unstable and the triangular points are stable for 0<μ<μ c , and unstable in the range $\mu_{c} \le\mu\le\frac{1}{2}$ , where $\mu_{c} \in(0,\frac{1}{2})$ , it is also observed that for these points the range of stability will decrease. The relations for periodic orbits around five libration points with their semimajor, semiminor axes, eccentricities, the frequencies of orbits and periods are found, furthermore for the orbits around the triangular points the orientation and the coefficients of long and short periodic terms also are found in the range 0<μ<μ c .  相似文献   

11.
This paper investigates the stability of triangular equilibrium points (L 4,5) in the elliptic restricted three-body problem (ER3BP), when both oblate primaries emit light energy simultaneously. The positions of the triangular points are seen to shift away from the line joining the primaries than in the classical case on account of the introduction of the eccentricity, semi-major axis, radiation and oblateness factors of both primaries. This is shown for the binary systems Achird, Luyten 726-8, Kruger 60, Alpha Centauri AB and Xi Bootis. We found that motion around these points is conditionally stable with respect to the parameters involved in the system dynamics. The region of stability increases and decreases with variability in eccentricity, oblateness and radiation pressures.  相似文献   

12.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for mc £ m < \frac12\mu_{c}\le\mu <\frac{1}{2}, where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

13.
In this paper, we prove that the locations of the triangular points and their linear stability are affected by the oblateness of the more massive primary in the planar circular restricted three-body problem, considering the effect of oblateness for J 2 and J 4. After that, we show that the triangular points are stable for 0<μ<μ c and unstable when , where μ c is the critical mass parameter which depends on the coefficients of oblateness. On the other hand, we produce some numerical values for the positions of the triangular points, μ and μ c using planets systems in our solar system which emphasis that the range of stability will decrease; however this range sometimes is not affected by the existence of J 4 for some planets systems as in Earth–Moon, Saturn–Phoebe and Uranus–Caliban systems.  相似文献   

14.
This study explores the effects of small perturbations in the Coriolis and centrifugal forces, radiation pressures and triaxiality of the two stars (primaries) on the position and stability of an infinitesimal mass (third body) in the framework of the planar circular restricted three-body problem (R3BP). it is observed that the positions of the usual five (three collinear and two triangular) equilibrium points are affected by the radiation, triaxiality and a small perturbation in the centrifugal force, but are unaffected by that of the Coriolis force. The collinear points are found to remain unstable, while the triangular points are seen to be stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the small perturbations in the Coriolis and centrifugal forces, radiation and triaxiality. It is also noticed that the former one and all the latter three posses stabilizing and destabilizing behavior respectively. Therefore, the overall effect is that the size of the region of stability decreases with increase in the values of the parameters involved.  相似文献   

15.
Within the frame work of the circular restricted three-body problem (CR3BP) we have examined the effect of axis-symmetric of the bigger primary, oblateness up to the zonal harmonic J 4 of the smaller primary and gravitational potential from a belt (circular cluster of material points) on the linear stability of the triangular libration points. It is found that the positions of triangular libration points and their linear stability are affected by axis-symmetric of the bigger primary, oblateness up to J 4 of the smaller primary and the potential created by the belt. The axis-symmetric of the bigger primary and the coefficient J 2 of the smaller primary have destabilizing tendency, while the coefficient J 4 of the smaller primary and the potential from the belt have stabilizing tendency. The overall effect of these perturbations has destabilizing tendency. This study can be useful in the investigation of motion of a particle near axis-symmetric—oblate bodies surrounded by a belt.  相似文献   

16.
In this paper we have examined the stability of triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate spheroid. Here we followed the time limit and computational process of Tuckness (Celest. Mech. Dyn. Mech. 61, 1–19, 1995) on the stability criteria given by McKenzie and Szebehely (Celest. Mech. 23, 223–229, 1981). In this study it was found that in comparison to other studies the value of the critical mass μ c has been reduced due to oblateness of the bigger primary, i.e. the range of stability of the equilateral triangular libration points reduced with the increase of the oblateness parameter I and hence the order of commensurability was increased.  相似文献   

17.
This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.  相似文献   

18.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
This paper investigates the periodic orbits around the triangular equilibrium points for 0<μ<μ c , where μ c is the critical mass value, under the combined influence of small perturbations in the Coriolis and the centrifugal forces respectively, together with the effects of oblateness and radiation pressures of the primaries. It is found that the perturbing forces affect the period, orientation and the eccentricities of the long and short periodic orbits.  相似文献   

20.
Non-linear stability zones of the triangular Lagrangian points are computed numerically in the case of oblate larger primary in the plane circular restricted three-body problem. It is found that oblateness has a noticeable effect and this is identified to be related to the resonant cases and the associated curves in the mass parameter versus oblateness coefficientA 1 parameter space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号