首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
陆烨  汪定雄 《天文学报》1998,39(3):271-277
对自引力磁均分和磁守恒两种模型的径向振荡稳定性的研究表明:在同时考虑自引力和磁场作用的情况下,吸积盘在磁均分和磁守恒模型中均存在着三种振荡模式,其中粘滞模式总是稳定的,磁声模式是不稳定的,中性模式在图中较长波段范围趋于稳定,在较短波段范围是不稳定的.这些结果有利于解释活动天体的Mark421和Pks2155—304的长周期光变现象.同时阐明了自引力在两种模型中对三种模式的影响有相同的趋势,而对磁场则分别起着相反的作用.这个结论表明磁均分吸积盘模型在解释光变现象时更为有利.  相似文献   

4.
Under influence of external gravity generated by Galactic all components excluding ISM, a magnetized gas disk may experience both Parker and convective instabilities. Growth rate of the convective instability increases with decreasing perturbation wavelength, and the convective motion makes sheet-like structures all over before the Parker instability forms structures of any meaningful size in the disk. Yet the Parker instability is thought to be an ideal route to form large-scale condensations in the Galaxy. In search of a means to curb convective activities in the Galactic ISM disk, the external gravity is replaced by self-gravity as a driving force of the Parker instability and the gravitational instability is invoked to reinforce the Parker instability. Perturbation of interchange mode is known to trigger convective instability in such disk and the one of undular mode to activate the Parker instability, while the gravitational instability can be triggered by both modes. Therefore, the resulting Jeans instability would help the Parker instability to overcome disrupting behavior of the convection. Dynamical properties of the disk can be characterized by ratio α of magnetic to gas pressure, adiabatic exponent γ, scale height H of the ISM, and disk thickness za. A linear stability analysis has been done to the disk, and the maximum growth rate of the Parker–Jeans instability is compared with that of the convective instability. The latter may or may not be higher than the former, depending on the disk parameters. The Parker–Jeans instability has chances to override the convective instability, when the disk is thicker than a certain value. In the disk thinner than the critical one, the Jeans instability can always suppress the convection. Since the growth rate of the convective instability is proportional to local gravitational acceleration, thereby in the general Galactic gravity, the convective instability works actively only in upper regions, we expect chaotic features to appear in regions of low density far from Galactic mid-plane.  相似文献   

5.
吴少平  吴学兵 《天文学报》1995,36(3):252-260
本文采用修正的粘滞定律及磁流体力学研究了薄吸积盘内区及外区的稳定性问题。运用微扰方法导出了色散方程,分析了四种情况下吸积盘的不稳定性,结果表明:在同时考虑磁场和修正的粘滞律时,吸积盘中存在着三种振荡模式,其中粘滞模式总是稳定的,磁声速模式(包括向里、向外传播两种模式)通常是不稳定的。这些结果为解释BL Lac天体、Seyfert星系、类星体等活动星系核的光变现象提供了理论依据。  相似文献   

6.
Gravitational stability of gaseous protostellar disks is relevant to theories of planetary formation. Stable gas disks favor formation of planetesimals by the accumulation of solid material; unstable disks allow the possibility of direct condensation of gaseous protoplanets. We present the results of numerical experiments designed to test the stability of thin disks against large-scale, self-gravitational disruption. The disks are represented by a distribution of about 6 × 104 point masses on a two-dimensional (r, φ) grid. The motions of the particles in the self-consistent gravity field are calculated, and the evolving density distributions are examined for instabilities. Two parameters that have major influences on stability are varied: the initial temperature of the disk (represented by an imposed velocity dispersion), and the mass of the protostar relative to that of the disk. It is found that a disk as massive as 1M, surrounding a 1M protostar, can be stable against long-wavelength gravitational disruption if its temperature is about 300°K or greater. Stability of a cooler disk requires that it be less massive, but even at 100°K a stable disk can have an appreciable fraction (13) of a solar mass.  相似文献   

7.
The spectrum of propagating waves and instabilities on a current-carrying, zero gas pressure, twisted magnetic flux loop is analysed for several models of the magnetic field structure. A surface wave mode of the fast Alfvén wave is found to exist, with damping of the wave when Alfvén resonance absorption occurs. If the loop is surrounded by a uniform, purely axial magnetic field, then the surface wave is always stable. If the loop is surrounded by a nonuniform field which is continuous with the loop's field, then the surface wave may connect to the unstable external kink mode.  相似文献   

8.
Estimates of magnetic fields for a number of active galactic nuclei are presented. These estimates are based on the observed polarization degrees and position angles of broad Hα lines and in the nearby continuum and on asymptotic analytical formulas for the Stokes parameters of the radiation emerging from a magnetized accretion disk (the Milne problem in a magnetized atmosphere). The characteristic observed feature of the wavelength dependence of the polarization degree inside the line—a minimum at the center and a fast increase of the position angle from one wing to another—can be explained by the superposition of resonance emission from two or more clouds located in the right (Keplerian velocity directed away from the observer) and left (Keplerian velocity directed toward the observer) parts of the orbit in the rotating magnetized accretion disk. The main component in our mechanism is the azimuthal magnetic field in the disk. The presence of a magnetic field perpendicular to the disk plane (which is usually weaker than the azimuthal field) results in the asymmetry of the distribution of the polarization degree and position angle inside the line. The inferred magnetic field strengths at the galactocentric distances where broad lines are emitted can be used to estimate the magnetic fields in the region of the centermost stable orbit and at the horizon of the central black hole, using the power-law dependence of the magnetic field strength corresponding to the standard model of the accretion disk.  相似文献   

9.
The stability of an isothermal, magnetized and causally limited viscosity accretion disk is examined in this paper. We find that the viscous modes are always stable throughout the disk, and the magneto-acoustic modes are pulsationally unstable. The results show that the Mach numbers do effect the instabilities of the disk and the magnetic field enhances the instability property of the radial oscillation. Our results are useful for understanding the time variations of AGN.  相似文献   

10.
In this paper, we study the conditions of realization and stability of kink modes with azimuthal wave numbers m = ±1 in a cylindrical plasma filament with a twisted magnetic field and a homogeneous current along its axis. We assume that there are vertical constant magnetic fields inside and outside of the filament; the filament is surrounded by current-free plasma; and outside of its boundary, the azimuthal magnetic field decreases inversely in proportion to the distance from the filament’s border. The dispersion equations for stable and unstable modes are obtained in the approximation of “thin” plasma filament. The analysis of the equations for the case of discontinuous vertical magnetic field at the filament’s boundary is provided. The conditions of propagation of the wave modes have been defined. We have obtained that the unstable modes with m = ±1 cannot be realized. The results of this work can be applied to the interpretation of the solar magnetic flux tubes’ behavior using measurements provided by the spacecrafts.  相似文献   

11.
We have carried out 1.25 pc resolution MHD simulations of the ISM, on a Cartesian grid of 0 ≤ (x, y) ≤ 1 kpc size in the galactic plane and ?10 ≤ z ≤ 10 kpc into the halo, thus being able to fully trace the time-dependent evolution of the galactic fountain. The simulations show that large scale gas streams emerge, driven by SN explosions, which are responsible for the formation and destruction of shocked compressed layers. The shocked gas can have densities as high as 800 cm?3 and lifetimes up to 15 Myr. The cold gas is distributed into filaments which tend to show a preferred orientation due to the anisotropy of the flow induced by the galactic magnetic field. Ram pressure dominates the flow in the unstable branch 102 < T ≤ 103.9 K, whereas for T ≤ 100 K (stable branch) magnetic pressure takes over. Near supernovae thermal and ram pressures determine the dynamics of the flow. Up to 80% of the mass in the disk is concentrated in the thermally unstable regime 102 < T ≤ 103.9 K with ~30% of the disk mass enclosed in the T ≤ 103 K gas. The hot gas in contrast is controlled by the thermal pressure, since magnetic field lines are swept towards the dense compressed walls.  相似文献   

12.
The standard thin accretion disk model can explain the soft X-ray spectra of Galactic black hole systems and AGN successfully. However, there are still a few observational documents for Radiation pressure theory in X-ray novae in black hole binary systems and AGN. The luminosity in accretion onto black holes is corresponds to L>0.01L E . According to standard thin disk model, when the accretion rate is over a small fraction of the Eddington rate, L>0.01L E , the inner region of the disk is radiation-pressure-dominated and thermally unstable. However, observations of the high/soft state of black hole X-ray binaries with luminosity within (0.01L E <L<0.5L E ) show that the disk is quite stable. Thus, this contradiction shows the objection of this model and maybe it is essential to change the standard viscosity law or one of the other basic assumptions in order to get a stable disk models. In this paper, we revisit and recalculate the thermal instability with a different models of viscosity and cooling functions and show that the choosing of an arbitrary cooling and viscosity functions can affect on the stability of a general disk model and hence maybe answer to a this problem in accretion disk theory. We choose an arbitrary functions of surface density Σ and half thickness of disk H for cooling and viscosity. Also, we discuss a general disk with thermal conduction, radial force and advection. Then, we solve the equations numerically. We obtain a fourth degree dispersions relation and discuss solutions and instability modes. This analysis shows the great sensitivity of stability of disk to the form of viscosity, so there are various effective factors to stabilize the disk. For example the exist of advection and thermal conduction can effect to stability of disks also.  相似文献   

13.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

14.
The standard thin accretion disk model predicts that the inner regions of alpha model disks, where radiation pressure is dominant, are thermally and viscously unstable. However, observations show that the bright X-ray binaries and AGN accretion disks, corresponding to radiation-pressure thin disks, are stable. In this paper, we reconsider the linear and local instability of accretion disks in the presence of a toroidal magnetic field. In the basic equations, we consider physical quantities such as advection, thermal conduction, arbitrary viscosity, and an arbitrary cooling function also. A fifth order diffusion equation is obtained and is solved numerically. The solutions are compared to non-magnetic cases. The results show that the toroidal magnetic field can make the thermal instability in radiation pressure-dominated slim disks disappear if ? m ≥0.3. However, it causes a more thermal instability in radiation pressure alpha disks without advection. Also, we consider the thermal instability in accretion disks with other values of the viscosity and obtain a general criterion for thermal instability in the long-wavelength limit and in the presence of a toroidal magnetic field.  相似文献   

15.
Kinetic Alfven waves are examined in the presence of electron and ion beam and an inhomogeneous magnetic field with bi-Maxwellian distribution function. The theory of particle aspect analysis is used to evaluate the trajectories of the charged particles. The expressions for the field-aligned currents, perpendicular currents (with respect to B 0), dispersion relation and growth/damping rate with marginal instability criteria are derived. The effect of electron and ion beam and inhomogeneity of magnetic field are discussed. The results are interpreted for the space plasma parameter appropriate to the auroral acceleration region of the earth’s magnetoplasma.  相似文献   

16.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

17.
The effect of collisions on electrostatic instabilities driven by gravity and density gradients perpendicular to the ambient magnetic field is studied. Electron collisions tend to stabilize the short wavelength (ky?i ? 1, where ky is the perpendicular wavenumber of the instability and ?i is the ion Larmor radius) kinetic interchange mode. In the presence of weak ion-ion collisions, this mode gets converted into an unmagnetized ion interchange mode which has maximum growth rate one order smaller than that of the collisionless mode. On the other hand, electron collisions can excite a long wavelength resistive interchange mode in a wide wavenumber regime (10?3 ? ky ?i ? 0.3) with growth rates comparable to that of the collisional Rayleigh-Taylor mode. The results may be relevant to some of the spread F irregularities.  相似文献   

18.
The effect of electron inertia on kinetic Alfven wave has been studied. The expressions for the dispersion relation, growth/damping rate and growth/damping length of the inertial kinetic Alfven wave (IKAW) are derived using the kinetic approach in cusp region. The Vlasov-kinetic theory has been adopted to evaluate the dispersion relation, growth/damping rate and growth/damping length with respect to the perpendicular wave number kρi (ρi is the ion gyroradius) at different plasma densities. The growth/damping rate and growth/damping length are evaluated for different me/βmi, where β is the ratio of electron pressure to the magnetic field pressure, mi, e are the mass of ion and electron, respectively, as I=me/βmi represent boundary between the kinetic and inertial regimes. It is observed that frequency of inertial kinetic Alfven wave (IKAW) ω is decreasing with kρi and plasma density. The polar cusp is an ideal laboratory for studies of nonlinear plasma processes important for understanding the basic plasma physics, as well as the magnetospheric and astrophysical applications of these processes.  相似文献   

19.
Starting with MHD equations we study the linear theory of stability of a plasma column with flow. From the dispersion equation derived, we calculate the dispersion curves and thereby estimate the effect of a flow in the linear theory. We find that, like the toroidal component of the magnetic field, a flow promotes instability: the rate of growth of instability may be increased by one or two orders of magntiude and the wavelength range for instability is also increased. When the flow velocity is large, the m=o and m=1 modes may appear almost together. Finally, a qualitative interpretation of three typical solar events is given on the basis of our results.  相似文献   

20.
MHD in protostellar discs is modified by the Hall current when the ambipolar diffusion approximation breaks down. Here I examine the Balbus–Hawley (magnetorotational) instability of a weak, vertical magnetic field within a weakly ionized disc. Vertical stratification is neglected, and a linear analysis is undertaken for the case in which the wavevector of the perturbation is parallel to the magnetic field.
The growth rate depends on whether the initial magnetic field is parallel or antiparallel to the angular momentum of the disc. The parallel case is less (more) unstable than the antiparallel case if the Hall current is dominated by negative (positive) species. The less-unstable orientation is stable for χ ≲0.5, where χ is the ratio of a generalized neutral–ion collision frequency to the Keplerian frequency. The other orientation has a formal growth rate of the order of the Keplerian angular frequency even in the limit χ →0! In this limit the wavelength of the fastest-growing mode tends to infinity, so the minimum level of ionization for instability is determined by the requirement that a wavelength fit within a disc scaleheight. In the ambipolar diffusion case, this requires χ > v A c s; in the Hall case this imposes a potentially much weaker limit,      相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号