首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relationship between the energy gap (E G) and the density (ρ) over mean atomic weight (〈A〉) ratio for Fe-poor oxide and silicate minerals is derived from simple properties of their free atom-components. Theoretical considerations are based on the Lorentz electron theory of solids. The eigenfrequency ν 0 of elementary electron oscillators, in energy units h ν 0, is identified with the energy gap of a solid. The numerical relation is of the form $$(\langle U_0 \rangle ^2 - E_G^2 )\frac{{\langle A\rangle }}{\rho } = \frac{4}{3}\pi \hbar ^2 \frac{{e^2 }}{m}N = 276.79 eV^2 cm^3 /mol$$ where 〈U 0〉 is the average first ionization potential (per free atom), ? is crossed Planck's constant, e is the electron charge, m is the electron rest mass, and N is Avogadro's number. For several geophysically interesting oxide and silicate minerals which are in general composed of four different elements (O, Si, Mg and Al), we obtain from laboratory data that the mean value of $$\left\langle {[\langle U_0 \rangle ^2 - (E_G^{lab} )^2 ]\frac{{\langle A\rangle }}{\rho }} \right\rangle \approx 248.2 \pm 20.9eV^2 cm^3 /mol.$$ .  相似文献   

2.
A unifying theory of kinetic rate laws, based on order parameter theory, is presented. The time evolution of the average order parameter is described by $$\langle Q\rangle \propto \smallint P(x)e^{^{^{^{^{^{^{ - xt} } } } } } } dx = L(P)$$ where t is the time, x is the effective inverse susceptibility, and L indicates the Laplace transformation. The probability function P(x) can be determined from experimental data by inverse Laplace transformation. Five models are presented:
  1. Polynomial distributions of P(x) lead to Taylor expansions of 〈Q〉 as $$\langle Q\rangle = \frac{{\rho _1 }}{t} + \frac{{\rho _2 }}{{t^2 }} + ...$$
  2. Gaussian distributions (e.g. due to defects) lead to a rate law $$\langle Q\rangle = e^{ - x_0 t} e^{^{^{^{^{\frac{1}{2}\Gamma t^2 } } } } } erfc\left( {\sqrt {\frac{\Gamma }{2}} t} \right)$$ where x 0 is the most probable inverse time constant, Γ is the Gaussian line width and erfc is the complement error integral.
  3. Maxwell distributions of P are equivalent to the rate law 〈Q〉∝e?kt .
  4. Pseudo spin glasses possess a logarithmic rate law 〈Q〉∝lnt.
  5. Power laws with P(x)=x a lead to a rate law: ln〈Q〉=-(α + 1) ln t.
The power spectra of Q are shown for Gaussian distributions and pseudo spin glasses. The mechanism of kinetic gradient coupling between two order parameters is evaluated.  相似文献   

3.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

4.
Widely extended, cation stacking faults in experimentally deformed Mg2GeO4 spinel have been studied using transmission electron microscopy (TEM). The faults lie on {110} planes. The displacement vector is of the form \(\frac{1}{4}\left\langle {1\bar 10} \right\rangle \) and is normal to the fault plane. The partial dislocations which bound the stacking fault have colinear Burgers vectors of the form \(\frac{1}{4}\left\langle {1\bar 10} \right\rangle \) which are normal to the fault plane.  相似文献   

5.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

6.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

7.
An updated model for pyroxene-melt equilibria at 1 atm has been developed and calibrated using new and existing experimental data in order to refine calculations of liquid lines of descent, which simulate the effect of igneous differentiation processes. We combine the Davidson and Lindsley (1985) model for activities of components in clinopyroxene and orthopyroxene solid solutions, a i p , where i represents a quadrilateral endmember, with the Nielsen and Drake (1979) expressions for component activities in the melt, a i L (two-lattice melt model). The chemical potential differences for pyroxene-melt equilibria are expressed in the form: $$\Delta \mu _{\iota } = 0 = In \left( {{{a_i^p } \mathord{\left/{\vphantom {{a_i^p } {a_i^L }}} \right.\kern-\nulldelimiterspace} {a_i^L }}} \right) + A_i + {{B_i } \mathord{\left/{\vphantom {{B_i } T}} \right.\kern-\nulldelimiterspace} T}$$ Pyroxene compositions were projected to quadrilateral compositions with the method of Lindsley and Anderson (1983). The regression constants A i and B i were calculated from experimental data that consists of 282 pyroxene-melt pairs, including 83 orthopyroxene-melt pairs. These experiments were all performed at 1 atm and represent compositions ranging from basalts (alkali to lunar) to dacites (42–66 wt% SiO2). The model is calibrated for 1000相似文献   

8.
A statistical mechanical analysis of the limiting laws for coupled solid solutions shows that the random model, in which the configurational entropy is calculated as if atoms mix randomly on each crystallographic site, is correct as a first approximation. In coupled solid solutions, since atoms of different valence substitute on the same sites, significant short-range order which reduces the entropy can be expected. A first-order correction is rigorously obtained for the entropy in dilute binary short-range ordered coupled solid solutions: $$\bar S^{{\text{XS}}} {\text{/R = }}Q\left( {{\text{e}}^{--H_{\text{A}} /{\text{R}}T} \left( {\frac{{H_{\text{A}} }}{{{\text{R}}T}} + 1} \right) - 1} \right)N_2^a N_4^b ,$$ where Q is the number of positions an associated cation pair can assume per formula unit, H A is the association energy per formula unit, and N 2 a and N 4 b are the site occupancy fractions for atoms 2 and 4 that are dilute on sites a and b. S XS is the configurational entropy minus the random model entropy. Aluminous pyroxenes on the joints diopside-jadeite and diopside-CaTs are examined as examples. A generalization for dilute multiple component solutions, including possible long-range ordering variations is given by: $$\frac{{\bar S^{{\text{XS}}} }}{{\text{R}}}{\text{ = }}\sum\limits_i {\sum\limits_j {\sum\limits_k {Q_i } } \left( {{\text{e}}^{--H_{\text{A}}^{j{\text{ }}k{\text{, }}i} /{\text{R}}T} \left( {\frac{{H_{\text{A}}^{j{\text{ }}k{\text{, }}i} }}{{{\text{R}}T}} + 1} \right) - 1} \right)N_j^l N_k^m ,} $$ where i labels each crystallographically distinct pair, j and k label atomic species, l and m label crystallographic sites, and the N's are site occupancy fractions for the solute atoms. A total association model is examined as well as the partial association and random models. Real solution behavior must lie between the total association model and the random model. Molecular models in which the ideal activity is proportional to a mole fraction, which in itself is not always unambiguously defined, do not lie in this range and furthermore have no physical justification.  相似文献   

9.
Crystals of challacolloite, KPb2Cl5, and hephaistosite, TlPb2Cl5, from volcanic sublimates formed on the crater rim of the “La Fossa Crater” at Vulcano, Aeolian Archipelago, Italy, were investigated. Chemical compositions were ${\left( {{\text{K}}_{{0.93}} {\text{Tl}}_{{0.02}} } \right)}_{{\Sigma = 0.95}} {\text{Pb}}_{{2.04}} {\left( {{\text{Cl}}_{{4.90}} {\text{Br}}_{{0.11}} } \right)}_{{\Sigma = 5.01}} $ and ${\text{Tl}}_{{0.94}} {\text{Pb}}_{{2.01}} {\left( {{\text{Cl}}_{{4.91}} {\text{Br}}_{{0.14}} } \right)}_{{\Sigma = 5.05}} $ , respectively. Single crystal X-ray measurements showed monoclinic symmetry for both phases, space group P21/c, with the following unit-cell parameters: a = 8.8989(4), b = 7.9717(5), c = 12.5624(8) Å, β = 90.022(4)°, V = 891.2(1) Å3, Z = 4 (challacolloite) and a = 9.0026(6), b = 7.9723(6), c = 12.5693(9) Å, β = 90.046(4)°, V = 902.1(1) Å3, Z = 4 (hephaistosite). The structure refinements converge to R = 3.99% and R = 3.86%, respectively. The effects of Br?Cl and K?Tl substitutions on the structure of these natural compounds have been discussed.  相似文献   

10.
The enstatite-diopside solvus presents certain interesting thermodynamic and crystal-structural problems. The solvus may be considered as parts of two solvi one with the ortho-structure and the other with clino-structure. By assuming the standard free energy change for the two reactions (MgMgSi2O6)opx ? (MgMgSi2O6)cpx and (CaMgSi2O6) opx ? (CaMgSi2O6) cpx as 500 and 1 000 to 3 000 cal/mol respectively, it is possible to calculate the regular solution parameter W for orthopyroxene and clinopyroxene. These W's essentially refer to mixing on M2 sites. The expression for the equilibrium constant by assuming ideal mixing for Fe-Mg, Fe-Ca and non-ideal mixing for Ca-Mg on binary M1 and ternary M2 sites is given by 1 $$K_a = \frac{{X_{{\text{Mg - cpx}}}^{{\text{M1}}} X_{{\text{Mg - cpx}}}^{{\text{M2}}} \exp \left[ {\frac{{W_{{\text{cpx}}} }}{{RT}}\left\{ {X_{{\text{Ca - cpx}}}^{{\text{M2}}} \left( {X_{{\text{Ca - cpx}}}^{{\text{M2}}} + X_{{\text{Fe - cpx}}}^{{\text{M2}}} } \right)} \right\}} \right]}}{{X_{{\text{Mg - cpx}}}^{{\text{M1}}} X_{{\text{Mg - opx}}}^{{\text{M2}}} \exp \left[ {\frac{{W_{{\text{cpx}}} }}{{RT}}\left\{ {X_{{\text{Ca - opx}}}^{{\text{M2}}} \left( {X_{{\text{Ca - opx}}}^{{\text{M2}}} + X_{{\text{Fe - opx}}}^{{\text{M2}}} } \right)} \right\}} \right]}}$$ where X's are site occupancies, R is 1.987 and T is temperature in oK. Temperature of pyroxene crystallization may be estimated by substituting for T in the above equation until the equation ?RT In K a=500 is satisfied. The shortcomings of this method are the incomplete standard free energy data on the end member components and the absence of site occupancy data in pyroxenes at high temperatures. The assumed free energy data do, however, show the possible extent of inaccuracy in temperature estimates resulting from the neglect of Mg-Ca non ideality.  相似文献   

11.
Groundwater-level data from an aquifer test utilizing four pumped wells conducted in the South Pasco wellfield in Pasco County, Florida, USA, were analyzed to determine the anisotropic transmissivity tensor, storativity, and leakance in the vicinity of the wellfield. A weighted least-squares procedure was used to analyze drawdowns measured at eight observation wells, and it was determined that the major axis of transmissivity extends approximately from north to south and the minor axis extends approximately from west to east with an angle of anisotropy equal to N4.54°W. The transmissivity along the major axis ${\left( {T_{{\xi \xi }} } \right)}$ is 14,019 m2 day–1, and the transmissivity along the minor axis ${\left( {T_{{\eta \eta }} } \right)}$ is 4,303 m2 day–1. The equivalent transmissivity $T_{e} = {\left( {T_{{\xi \xi }} T_{{\eta \eta }} } \right)}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} = 7,767{{\text{m}}^{2} } \mathord{\left/ {\vphantom {{{\text{m}}^{2} } {{\text{day}}^{{ - {\text{1}}}} }}} \right. \kern-0em} {{\text{day}}^{{ - {\text{1}}}} }$ , and the ratio of anisotropy is 3.26. The storativity of the aquifer is 7.52?×?10?4, and the leakance of the overlying confining unit is 1.37?×?10?4 day?1. The anisotropic properties determined for the South Pasco wellfield in this investigation confirm the results of previous aquifer tests conducted in the wellfield and help to quantify the NW–SE to NE–SW trends for regional fracture patterns and inferred solution-enhanced flow zones in west-central Florida.  相似文献   

12.
Hard mode Raman spectroscopy (HMRS) on hypersolvus alkali feldspar shows a temperature dependence of the order parameter of the displacive \({{C2} \mathord{\left/ {\vphantom {{C2} {m{\text{ - }}C\bar 1}}} \right. \kern-0em} {m{\text{ - }}C\bar 1}}\) phase transition following mean-field behaviour: $$Q \sim \sqrt {T_c - T;} 300 {\text{K}} \lesssim T< T_c $$ At lower temperatures, a spontaneous saturation sets in, which is attributed to site-ordering effects of the alkali atoms even in hypersolvus anorthoclase. Fluctuational line broadening of Si-O viration bands is explained by strong lattice distortions around alkali positions and local deformation of the Al,Si,O network. The thermodynamic relevance of these distortions is discussed in relation to the possibility of an additional diffuse phase transition occurring atT d =302 K. The experimental results of HMRS are compared with those on Al,Si ordered and disordered albite, where no fluctuation broadening occurs.  相似文献   

13.
The luminosity L of radio pulsars due to synchrotron radiation by the primary beam at the magnetosphere periphery is derived. There is a strong correlation between the observed optical luminosities of radio pulsars and the parameter $\dot P/P^4$ (where P is the pulsar period). This correlation predicts appreciable optical emission from several dozen pulsars, in particular, from all those with P<0.1 s. Agreement with optical observations can be achieved for Lorentz factors of the secondary plasma γp=2–13. Plasma with such energies can be produced only when the magnetic-field structure near the neutron-star surface deviates substantially from a dipolar field. The peak frequency of the synchrotron spectrum should shift toward higher values as the pulsar period P decreases; this is, in agreement with observational data for 27 radio pulsars for which emission has been detected outside the radio band.  相似文献   

14.
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties.  相似文献   

15.
Reactions involving the phases quartz-rhodochrosite-tephroite-pyroxmangite-fluid have been studied experimentally in the system MnO-SiO2-CO2-H2O at a pressure of 2 000 bars and resulted in the following expressions 1 $$\begin{gathered} {\text{Rhodochrosite + Quartz = Pyroxmangite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{11.765}}{T} + 18.618. \hfill \\ {\text{Rhodochrosite + Pyroxmangite = Tephroite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{7.083}}{T} + 11.870. \hfill \\ \end{gathered}$$ which can be used to derive data for the remaining two reactions among the phases under consideration. Field data from the Alps are in agreement with the metamorphic sequence resulting from the experiments.  相似文献   

16.
New data concerning glaucophane are presented. New high temperature drop calorimetry data from 400 to 800 K are used to constrain the heat capacity at high temperature. Unpublished low temperature calorimetric data are used to estimate entropy up to 900 K. These data, corrected for composition, are fitted for C p and S to the polynomial expressions (J · mol?1 · K?2) for T> 298.15 K: $$\begin{gathered} C_p = 11.4209 * 10^2 - 40.3212 * 10^2 /T^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 41.00068 * 10^6 /T^2 \hfill \\ + 52.1113 * 10^8 /T^3 \hfill \\ \end{gathered} $$ $$\begin{gathered} S = 539 + 11.4209 * 10^2 * \left( {\ln T - \ln 298.15} \right) - 80.6424 * 10^2 \hfill \\ * \left( {T^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 1/\left( {298.15} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right) + 20.50034 * 10^6 \hfill \\ * \left( {T^{ - 2} - 1/\left( {298.15} \right)^2 } \right) - 17.3704 * 10^8 * \left( {T^{ - 3} - \left( {1/298.15} \right)^3 } \right) \hfill \\ \end{gathered} $$ IR and Raman spectra from 50 to 3600 cm?1 obtained on glaucophane crystals close to the end member composition are also presented. These spectroscopic data are used with other data (thermal expansion, acoustic velocities etc.) in vibrational modelling. This last method provides an independent way for the determination of the thermodynamic properties (Cp and entropy). The agreement between measured and calculated properties is excellent (less than 2% difference between 100 and 1000 K). It is therefore expected that vibrational modelling could be applied to other amphiboles for which spectroscopic data are available. Finally, the enthalpy of formation of glaucophane is calculated.  相似文献   

17.
We find clear intrinsic anharmonicity in the NaCl-B1 phase by examining the equation of state (EoS) based on previous ultrasonic velocity data for pressures up to 0.8 GPa and temperatures up to 800 K. The experimental EoS for this phase shows that its specific heat at constant volume (C V ) is significantly smaller than that based on a harmonic model. Also, the sign of $\left( {{{\partial C_{V} } \mathord{\left/ {\vphantom {{\partial C_{V} } {\partial P}}} \right. \kern-0pt} {\partial P}}} \right)_{T} ,$ which is normally negative in the quasi-harmonic approximation, is unexpectedly positive. The thermodynamic Grüneisen parameter (γ), which has frequently been assumed to be a single-variable function of molar volume, shows not only volume dependence but also negative temperature dependence. To understand these features of C V and γ, we introduce a thermodynamic model including positive quartic anharmonicity. To make an anharmonic model advancing the ordinarily quasi-harmonic approximation model, we introduce two parameters: anharmonic characteristic temperature (θ a ) and its volume derivative. In the anharmonic model, the value of C V is calculated along an isochore using classical statistical mechanics and a harmonic quantum correction. At high temperatures, the decrease in C V from the Dulong-Petit limit is related to the value of T/θ a . For infinitely large θ a , the system is approximately quasi-harmonic. The temperature dependence of γ is related to C V by the thermodynamic identity $\left( {{{\partial C_{V} } \mathord{\left/ {\vphantom {{\partial C_{V} } {\partial \ln V}}} \right. \kern-0pt} {\partial \ln V}}} \right)_{T} = C_{V} \left( {{{\partial \gamma } \mathord{\left/ {\vphantom {{\partial \gamma } {\partial \ln T}}} \right. \kern-0pt} {\partial \ln T}}} \right)_{V} + \gamma \left( {{{\partial C_{V} } \mathord{\left/ {\vphantom {{\partial C_{V} } {\partial \ln T}}} \right. \kern-0pt} {\partial \ln T}}} \right)_{V}.$ Even though our modification of the quasi-harmonic approximation is simple, our anharmonic model succeeds in reproducing the experimental γ and C V simultaneously for the NaCl-B1 phase.  相似文献   

18.
Photon correlation spectroscopy has been applied to the study of longitudinal strain relaxation of vitreous Jadeite (NaAlSi2O6) in the temperature range 811–1014° C. The correlation function $\left| {g^{\left( 1 \right)} \left. {\left( t \right)} \right|^2 \propto \exp \left( {\left( { - 2t/\tau _\beta } \right)^\beta } \right)} \right.$ obeys a Kohlrausch type function with β=0.64±0.01. Individual correlation functions fit altogether a master relaxation curve, thus demonstrating thermorheological simplicity (TRS). The temperature dependence of the measured relaxation times shows Arrhenian behaviour with $\log \left( \tau \right) = - 21.4 \pm 0.3{\text{s}} {\text{ + }} {\text{471}}{\text{.6}} \pm {\text{22}} {\text{kJmol}}^{{\text{ - 1}}} /RT$ . The time scale of longitudinal strain relaxation is consistent with the existing data on shear relaxation derived from shear viscosity and structural relaxation calculated from calorimetric C pmeasurements. Comparison with oxygen diffusion indicates that network forming elements relax at about the same time scale as viscoelastic properties. On the other hand, Na+ relaxation times derived from impedance spectroscopy are short compared to viscoelastic relaxation times at low temperatures. This difference is decreasing with increasing temperature and possibly disappearing at approximately 1100° C.  相似文献   

19.
We present the results of a comparative statistical analysis of the integrated radio luminosities of millisecond and normal pulsars and their dependences on other parameters of the pulsars. The analysis is based on our own measurements of the flux densities, spectra, and integrated radio luminosities of the millisecond pulsars, as well as data from the literature used to determine the integrated radio luminosities for 545 pulsars, 50 of them millisecond pulsars. Despite large differences in their periods P, period derivatives $\dot P$ , magnetic fields B, and ages τ, the integrated radio luminosities of the millisecond and normal pulsars and their dependences on other parameters are approximately the same. The integrated radio luminosity depends on the parameter B/P 2, which is proportional to the potential difference in the polar-cap gap; this may indicate that the radio energy of pulsars is determined by the energy of primary particles accelerated in the polar-cap gap. Secular decreases in the radio luminosities of both normal and millisecond pulsars were also detected.  相似文献   

20.
A garnet-clinopyroxene geothermometer based on the available experimental data on compositions of coexisting phases in the system MgO-FeO-MnO-Al2O3-Na2O-SiO2 is as follows: $$T({\text{}}K) = \frac{{8288 + 0.0276 P {\text{(bar)}} + Q1 - Q2}}{{1.987 \ln K_{\text{D}} + 2.4083}}$$ where P is pressure, and Q1, Q2, and K D are given by the following equations $$Q1 = 2,710{\text{(}}X_{{\text{Fe}}} - X_{{\text{Mg}}} {\text{)}} + 3,150{\text{ }}X_{{\text{Ca}}} + 2,600{\text{ }}X_{{\text{Mn}}} $$ (mole fractions in garnet) $$\begin{gathered}Q2 = - 6,594[X_{{\text{Fe}}} {\text{(}}X_{{\text{Fe}}} - 2X_{{\text{Mg}}} {\text{)]}} \hfill \\{\text{ }} - 12762{\text{ [}}X_{{\text{Fe}}} - X_{{\text{Mg}}} (1 - X_{{\text{Fe}}} {\text{)]}} \hfill \\{\text{ }} - 11,281[X_{{\text{Ca}}} (1 - X_{{\text{Al}}} ) - 2X_{{\text{Mg}}} 2X_{{\text{Ca}}} ] \hfill \\{\text{ + 6137[}}X_{{\text{Ca}}} (2X_{{\text{Mg}}} + X_{{\text{Al}}} )] \hfill \\{\text{ + 35,791[}}X_{{\text{Al}}} (1 - 2X_{{\text{Mg}}} )] \hfill \\{\text{ + 25,409[(}}X_{{\text{Ca}}} )^2 ] - 55,137[X_{{\text{Ca}}} (X_{{\text{Mg}}} - X_{{\text{Fe}}} )] \hfill \\{\text{ }} - 11,338[X_{{\text{Al}}} (X_{{\text{Fe}}} - X_{{\text{Mg}}} )] \hfill \\\end{gathered} $$ [mole fractions in clinopyroxene Mg = MgSiO3, Fe = FeSiO3, Ca = CaSiO3, Al = (Al2O3-Na2O)] K D = (Fe/Mg) in garnet/(Fe/Mg) in clinopyroxene. Mn and Cr in clinopyroxene, when present in small concentrations are added to Fe and Al respectively. Fe is total Fe2++Fe3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号