首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
长牡蛎的壳色有很多种,其中壳色较深个体(黑壳)比较浅个体(白壳)的外套膜中含有更多的黑色素。本研究采用高效液相色谱-质谱法(HPLC-MS/MS)测定天然海水中白壳与黑壳长牡蛎外套膜双酚A (BPA)含量,发现黑壳长牡蛎外套膜中的BPA含量较白壳长牡蛎低(P0.05)。由于黑色素合成过程中的关键——酶酪氨酸酶是一种酚氧化酶,可以通过对氧化酚类或芳胺类等多种底物的氧化起催化作用,推测其在BPA等酚类毒物的降解中也发挥重要作用。为了进一步研究不同黑色素含量牡蛎对BPA降解能力和对BPA损伤抵抗能力的差异,本实验进行了浓度为1 mg/L,1.5 mg/L和2 mg/L的BPA亚慢性暴露实验:通过对暴露后长牡蛎外套膜组织中BPA含量分析发现,白壳与黑壳长牡蛎外套膜中BPA含量均随着暴露浓度的升高而升高,且3种浓度BPA亚慢性暴露后,黑壳长牡蛎外套膜BPA含量均低于白壳长牡蛎,但是差异不显著(P0.05)。采用3种浓度BPA亚慢性暴露后,黑壳长牡蛎外套膜组织中活性氧(ROS)荧光值均显著低于白壳长牡蛎(P0.01)。通过对外套膜组织学观察发现,2 mg/L的高浓度BPA暴露使白壳长牡蛎外套膜组织发生了明显的病理变化,黑壳长牡蛎外套膜未发生明显的病理变化。可见,黑壳长牡蛎对BPA暴露可能具有更强的抵抗能力。  相似文献   

2.
长牡蛎(Crassostrea gigas)Wnt4基因cDNA克隆与表达分析   总被引:1,自引:0,他引:1  
Wnt4作为Wnt基因家族的重要成员,在动物的生长发育过程中起重要调控作用。本文利用RACE技术克隆了长牡蛎Wnt4基因c DNA全长序列,该序列全长1999bp,开放阅读框为1068bp,编码355个氨基酸,该蛋白序列与人(Homo sapiens)、沙蚕(Platynereis dumerilii)和栉孔扇贝(Chlamys farreri)Wnt4蛋白的相似性分别为44%、48%和46%。通过荧光定量RT-PCR分析长牡蛎Wnt4基因在成体不同组织和不同发育阶段的表达情况,发现长牡蛎的Wnt4基因具有广泛的组织表达特点,在所检测的多种组织中(外套膜、鳃、唇瓣、消化腺、雄性性腺、雌性性腺)均有表达,推测长牡蛎的Wnt4以信号分子的形式参与多种组织细胞的生命过程;长牡蛎个体发育过程中Wnt4基因的高表达主要集中在胚胎发育的早期(桑葚期最高,原肠胚期次之),幼贝期该基因的表达量很低,说明Wnt4基因可能在早期发育阶段参与了某些器官的形成。  相似文献   

3.
为了提取和鉴定长牡蛎(Crassostrea gigas)贝壳与外套膜中的黑色物质,选取贝壳与外套膜颜色均为黑色的长牡蛎,将贝壳及外套膜进行粉碎、盐酸水解、水浴加热、乙醚抽脂,从3份贝壳中提取出3份黑色固体物质,从3份外套膜中提取出3份黑色固体物质,将提取的黑色固体溶解于0.01m L/L氢氧化钠水溶液中,在150—500 nm的范围内测定紫外吸收光谱,发现其最大吸收峰在210 nm左右,随着波长增加,其吸光值迅速大幅度下降,与公认的黑色素紫外吸收光谱特征一致,从而首次确定长牡蛎贝壳与外套膜中的黑色物质为黑色素。  相似文献   

4.
该研究是继天然长牡蛎(Crassostrea gigas)黑色素的提取、可溶性长牡蛎(Crassostrea gigas)黑色素的制备之后,对牡蛎黑色素提纯方面的进一步拓展和延伸。运用半透化学材料分离的方法,选取纳滤透析膜为分离介质,对可溶性长牡蛎黑色素的制取产物中多余的盐类无机物进行分离剔除,进而得到纯度较高、品质优良的可溶性长牡蛎黑色素晶体,通过称质量和盐度测量,计算得出该方法对黑色素脱盐率达到98%,证明了该方法可以进行贝类黑色素的脱盐处理工作。  相似文献   

5.
5-羟色胺刺激长牡蛎排放精卵在四倍体诱导中的应用   总被引:4,自引:0,他引:4  
本文报道了用 5 羟色胺催产出的长牡蛎精、卵 ,人工授精后诱导四倍体的实验结果 .结果表明 :在 2 6℃水温条件下 ,受精后 7min ,用 0 .5mg/dm3细胞松弛素B处理2 5min ,获得长牡蛎的胚胎四倍体 ,其诱导率为 1 6.7%,D形幼虫孵化率为 2 7.0 %;诱导效果优于采用常规解剖法 .注射 5 羟色胺刺激长牡蛎亲贝排放精、卵的有效浓度分别为 1× 1 0 -6 ~ 1× 1 0 -2 mol/dm3和 1× 1 0 -5 ~ 1× 1 0 -3mol/dm3.  相似文献   

6.
为探究三倍体长牡蛎(Crassostrea gigas)性腺发育的分子调控机制,对AMPK基因及其靶基因在长牡蛎性腺发育过程中的表达特性进行研究。长牡蛎AMPK包含AMPK α、AMPK β和AMPK γ三个亚基。荧光定量PCR结果显示,这三个亚基的mRNA表达量在二倍体长牡蛎性腺发育过程中均呈下降趋势,在三倍体长牡蛎性腺发育过程中均呈上升趋势。二倍体长牡蛎性腺中AMPK α亚基Thr172位点磷酸化(p-AMPK α)水平在增殖期高,到成熟期几乎完全消失,这说明在长牡蛎性腺发育早期AMPK基因可能起到重要调控作用;在三倍体长牡蛎中,不育型三倍体(3nβ)的p-AMPK α水平显著高于可育型三倍体(3nα),推测AMPK α亚基磷酸化增强可能与三倍体不育密切相关。AMPK α亚基活性蛋白主要定位在滤泡细胞、精原/精母细胞和卵原/卵母细胞,说明该蛋白可能参与调控长牡蛎配子发生的早期过程。对AMPK潜在靶基因(GCS、CREB、SREBP1、ACC和Raptor)进行表达量分析,结果显示长牡蛎中p-AMPK α可能参与了CREB和SREBP1基因表达的调控。推测在可育型三倍体长牡蛎性腺发育...  相似文献   

7.
虽然牡蛎黑色素已经提取鉴定成功,但因为大部分实验需要用到黑色素的水溶液,而天然黑色素不溶于水,致使天然长牡蛎(Crassostrea gigas)黑色素的功效验证工作难以开展。本课题组探究总结出一套有效方法,对可溶性长牡蛎黑色素进行制取。首先选用酸碱法,从黑色长牡蛎中提取出天然长牡蛎黑色素,将其溶于氢氧化钠溶液中,利用超声细胞破碎仪进行处理,用盐酸中和至中性,离心取上清并干燥后得到一种黑色可溶性固体;再将该黑色固体分别用激光粒度测试仪、红外光谱仪和紫外光谱扫描仪进行检验后,发现天然长牡蛎黑色素经过超声降解处理后,颗粒粒度大幅下降,其溶解性大幅提高。红外光谱则显示出1630nm左右有明显的峰值,说明超声降解处理并未破坏真黑色素吲哚环等官能团;紫外吸光图谱的比较则显示天然长牡蛎黑色素破碎后,吸收峰仍然出现在210nm左右,但吸收值明显升高,说明超声降解法可以将难溶于水的天然长牡蛎黑色素降解为可溶于水的小颗粒可溶性黑色素,从而提高了紫外吸收值。可溶性牡蛎黑色素的制备成功对推动牡蛎黑色素的功能研究具有重要意义。  相似文献   

8.
长牡蛎剥离精卵的存活时间及受精能力   总被引:4,自引:1,他引:4  
  相似文献   

9.
几丁质是贝壳有机框架的重要组成成分,在贝类生物矿化中发挥着重要作用,然而贝壳不同部位的几丁质含量与类型是否存在差异,目前还未有报道。本研究通过脱钙、脱蛋白、漂白的方法分别从长牡蛎贝壳的壳膜、贝壳表面的角质鳞片、贝壳内侧的棱柱层与片层结构中提取到粉末状固体,并通过傅里叶红外光谱(Fourier Transform Infrared Spectroscopy, FTIR)对提取产物进行鉴定,发现这3个部位的提取产物均具有几丁质的特征吸收峰。通过对比3个部位提取产物的吸收峰,发现壳膜和角质鳞片中提取到的几丁质产物FTIR结构较为相似,其结构特征更接近于β-几丁质;而在富含钙质的棱柱层及片层结构中,几丁质提取产物在1 620 ~ 1 660 cm-1波数处有两个特征吸收峰,其结构更接近于α-几丁质。在长牡蛎壳膜、角质鳞片及贝壳内侧的几丁质提取物的含量分别为:(15.14 ± 1.13)%、(4.52 ± 0.85)%、(0.27 ± 0.12)%。3个部位中,壳膜主要由几丁质和基质蛋白构成,角质鳞片则积累了更多钙质,而贝壳内侧的棱柱层与片层结构中含有大量的碳酸钙,这导致壳膜中提取产物得率最高,而在贝壳内侧提取产物得率显著下降。  相似文献   

10.
长牡蛎中天然牛磺酸的提取   总被引:6,自引:0,他引:6  
以长牡蛎(Crassostrea gigas)为研究对象,探讨并优化了从牡蛎中提取和制备牛磺酸的工艺。牛磺酸纯度采用TLC进行分析,其结构进一步用红外光谱(IR)和核磁共振波谱(NMR)进行了确证。结果表明,长牡蛎富含牛磺酸,在60℃水溶液中提取率(0.8%,湿质量)较高,为天然牛磺酸开发提供了参考数据。  相似文献   

11.
本文综述了太平洋牡蛎多倍体产生的途径、诱导方法、诱导结果、诱导机制、倍性鉴别方法、繁殖、生长、生理指标、抗逆性和口味等。提出。6-DMAP诱导牡蛎三倍体的技术前景广阔;四倍体与二倍体杂交的方法是产生三倍体的最好途径;四倍体是生物方法产生三倍体的中间材料,可以存活,应加大力度地研究和开发;三倍体的性腺能够发育,并可产生具有繁殖力的配子;在良好的环境里,四倍体的生长和抗逆性较二倍体优势;在繁殖季节,三倍体的生化组成等指标比二倍体高,口味较好。  相似文献   

12.
牡蛎是重要的养殖贝类,营固着生活,能聚集形成牡蛎礁,在海洋生态系统中发挥着重要作用。本研究以成体长牡蛎为研究对象,将牡蛎从附着基上剥离下来,去掉其左壳腹缘端的表面鳞片并打磨平整,露出棱柱层,将其紧密粘合于水泥砖、橡胶片、磨砂玻璃三种固着基表面,背缘端用水泥固定,观察并记录牡蛎贝壳的修复及再固着情况。结果发现:左壳损伤后,在贝壳边缘会生长出新的透明壳膜,此时壳膜虽然会紧靠固着基表面生长,但却不能再次固着;将牡蛎从固着基上剥离下来,在三种固着基表面均未发现有“附着斑”形成。因此,为了进一步研究左壳损伤后贝壳修复的分子机制以及不能再次固着的原因,对长牡蛎左壳损伤后的外套膜转录组进行了分析,发现在损伤后的第1 d、第5 d、第9 d、第13 d、第17 d和第21 d,左侧外套膜中差异上调表达的基因显著富集在TGF-β等信号通路,而下调表达的基因显著富集在对温度以及对非生物刺激反应相关通路。通过基因表达数据,还发现壳损伤后Cgfmp、CgTyr、EGF-P1等与黏附相关的基因呈下调表达,这可能是导致成体长牡蛎无法再次固着的原因。长牡蛎贝壳损伤后再固着能力的研究,为贝类生物矿化、附着等机制的研究...  相似文献   

13.
太平洋牡蛎精子形成的研究   总被引:1,自引:0,他引:1  
透射电镜下研究了太平洋牡蛎 (Crassostrea gigas Thunberg)的精子形成过程。精子细胞中含有前顶体颗粒、线粒体、高尔基体、中心粒等多种细胞结构 ,线粒体、前顶体颗粒的数量较多。在精子形成过程中 ,前顶体颗粒逐渐汇集、愈合成顶体泡 ,顶体泡覆盖在细胞核的一端逐渐发育为顶体 ;线粒体则向顶体相反的方向移动 ,最后移到核后端形成 4个较大的线粒体球 ;中心粒移到核后端由远端中心粒形成轴丝 ;细胞核发生致密 ,形态发生变化 ,最后形成杯状的精子核 ;多余的细胞质被抛弃。  相似文献   

14.
长牡蛎繁殖周期、生化成分的季节变化与环境因子的关系   总被引:4,自引:0,他引:4  
为了阐明长牡蛎的繁殖策略,自2004年3月—2005年2月对乳山湾养殖海区的环境因子(水温、盐度、叶绿素a含量)、长牡蛎繁殖周期及其生化成分(糖原、脂肪、蛋白质、RNA/DNA比值)的季节变化进行研究。结果显示,水温在一年中呈现显著变化,夏季水温最高,最高值为29.5℃(8月),冬季水温最低,最低值为1.8℃(1月);盐度在夏季雨水较多的时候略有降低;叶绿素a含量在夏末秋初(8月和9月)和春季(4月)有2个峰值,冬季最低。长牡蛎的繁殖周期分为冬季的休止期和从春季到夏季的繁殖期,在长牡蛎的繁殖期,条件指数逐渐下降到最低值,表明繁殖期长牡蛎生长变慢。在长牡蛎的配子发生过程中软体部蛋白质和脂肪含量略有上升,而糖原含量显著下降,表明长牡蛎配子的发生需要储存的糖原提供能量;RNA/DNA比值在配子发生过程中逐渐升高,显示RNA/DNA比值可以作为一个指标来指示长牡蛎的性成熟。配子发生过程中,长牡蛎的灰分含量逐渐升高,表明长牡蛎通过分解自身的贮能物质提供能量,使体内有机物含量减少,从而导致灰分含量上升。实验结果表明长牡蛎的配子发生类型为保守种。  相似文献   

15.
长牡蛎 (Crassostrea gigas) 是我国重要的海水养殖贝类,近年其大规模死亡现象频繁发生。为了解长牡蛎的免疫基因在季节上的表达模式变化规律及死亡爆发高峰期的水环境情况,在其主养区山东乳山进行了相关研究。分别在 2018 年 1、 3、5—9 月对该地区牡蛎鳃样品做了免疫基因定量分析,在 6、7、9 月对养殖海域的环境因子 (水温、盐度、pH、溶解氧)、各时间点水体里的浮游植物数量及各采样点牡蛎条件指数的变化进行了研究。结果显示,HSP70 在 7 月份高表达,其余 5 个抗性相关基因在 8 月表达水平达到峰值。在测量的三个月中,7 月水温最高,6 月和 9 月水温略低于 7 月,这一结果和表达模式相关。研究表明近岸的藻类丰度更大。因此,温度是影响长牡蛎存活的各环境因子中的主要因素,温度显著影响到体内抗性基因的表达情况并且间接影响到夏季牡蛎的条件指数。  相似文献   

16.
长牡蛎基因组微卫星引物的开发和特性描述   总被引:1,自引:0,他引:1  
长牡蛎于20世纪80年代从日本引进中国.在我国,长牡蛎已经成为重要的贝类养殖产业之一.本实验从全基因组上筛查微卫星序列,在微卫星筛查的范围、数目和类型上是传统的富集文库法开发微卫星所无法比拟的.利用基因组微卫星序列总共设计了104对引物,54对引物能扩增出目的片段,其中有34对引物显示多态性扩增,占32.7%,20对引...  相似文献   

17.
在双壳类软体动物中, 血淋巴细胞介导的吞噬作用是清除入侵微生物的主要方式。本文在长牡蛎中鉴定了一个包含富含亮氨酸重复序列(Leucine-rich repeat, LRR)结构域的新型基因, 命名为CgLRRC69。对该基因的组织分布分析表明, CgLRRC69 mRNA在血淋巴细胞、鳃、肌肉、外套膜、心脏、消化腺和性腺中广泛表达。副溶血弧菌感染可以显著地刺激CgLRRC69在血淋巴细胞中表达, 并且在感染后6h达到峰值。同时, 酶联免疫吸附实验发现CgLRRC69可以特异性结合脂多糖(lipopolysaccharide, LPS), 表明它可能在免疫防御中有功能。吞噬实验结果显示, CgLRRC69重组蛋白可以显著地提高血淋巴细胞的吞噬能力; RNAi干扰CgLRRC69在牡蛎体内的表达, 显著降低了血淋巴细胞对细菌的清除能力。因此, 这些结果揭示了CgLRRC69作为一种新型模式识别受体, 可以特异性识别革兰氏阴性菌的主要成分LPS, 通过调理作用有效地清除细菌。  相似文献   

18.
利用荧光显微镜观察太平洋牡蛎正常卵子与雄核发育卵子在受精过程、减数分裂和卵裂早期中的核相变化。雄核发育单倍体是将强度为2.8mW.cm-2.s-1的紫外线照射30s的卵子与正常精子受精后得到的。结果表明,尽管紫外线照射并没有影响卵子的成熟分裂及雌性、雄性原核的形成,但使它们的发生过程滞后。在第1卵裂中期,雄核发育卵子中雌性原核并不像雄性原核一样形成染色体,而是形成1个浓缩的染色质小体(DCB)。第1卵裂后期,DCB不参与核分裂。第1卵裂结束时,DCB位于2个分裂球其中之一的细胞质内或在赤道板处被分割成2部分。实验结果首次提供了太平洋牡蛎雄核发育的细胞学证据。  相似文献   

19.
Reproductive cycles of the Pacific oyster Crassostrea gigas (Thunberg) from the Marlborough Sounds, New Zealand, were followed between June 1998 and January 2000. Histological examination of the gonad confirms an annual cycle with a winter inactive period followed by rapid gonad development and a single short spawning period. The population gonad index correlated with seawater temperature and changes in tissue dry weight, condition index, and biochemical components. In winter, few individuals with early gametogenic stages were present and rapid development of primary oocytes (diam. 11 μm) occurred during spring (September‐November). The developmental rate and the diameter of mature oocytes (37 μm) was similar for the 1998 and 1999 seasons. For a standard 110‐mm‐length oyster, maximal tissue body weight and condition index were recorded in December. Rapid weight loss in January was length dependent and was attributed to spawning. Temperature was the environmental variable which best correlated with the timing of gametogenesis. Food availability (phytoplankton biomass) may have been responsible for inter‐annual variations. The biochemical composition (% glycogen, lipid, protein) of separated gonad and somatic tissues were variable seasonally and annually. Gametogenesis (oocyte diameter) was associated with increased gonad protein and glycogen and a decrease in lipid concentrations. These changes are similar to those in Pacific oyster populations from other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号