共查询到20条相似文献,搜索用时 15 毫秒
1.
对2002年1月1日-2002年12月31日日照市环境监测中心提供的PM10(可吸入颗粒物)日平均浓度资料和对应时段的日照市地面气象资料做了深入的分析,揭示了污染物PM10变化特征及其随气象要素的变化规律。同时分析了主要污染物PM10与地面风速、风向间的相关关系,发现日照市大于等于3级的PM10污染日均出现在1-4月,地面风速对污染物PM10浓度有一定影响,当地面风速超过5m/s时,3级及以上污染日很少出现,当地面风速超过6.5m/s时,随着风速的提高,污染物浓度呈下降趋势。污染物浓度呈明显的季节变化,冬、春季节明显高于夏、秋季节。 相似文献
2.
2007和2008年夏季北京奥运馆大气PM10与PM2.5质量浓度变化特征 总被引:5,自引:1,他引:5
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg·m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg·m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg·m-3·d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg·m-3·d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。 相似文献
3.
对2015年3月至2018年2月共36个月荆门市PM2.5浓度值按月和季节作特征分析,利用HYSPLIT轨迹模型对污染最为严重的冬季进行后向48h气团轨迹模拟。结果表明:PM2.5月均浓度表现为1月最高,达到107μg/m3,7月最低,为30μg/m3,冬季平均值为92μg/m3,显著高于其它季节,并且冬季高浓度PM2.5主要与本地地面5—11m/s的偏北(N、NNE)大风伴随出现;气团轨迹分为西南、东北、西北三个路径,近地面传输的东北路径和高空传输的西南路径气团均引起PM2.5浓度升高,而西北路径气团整体上对污染物具有一定清除作用;东北路径方向的河南以及靠近荆门市的西北、西南向地区为48h的潜在源贡献大值区。在通过气象条件定性判断荆门未来的PM2.5浓度变化时,因东北路径近地面传输的特性,应关注上游潜在源区内地面站点PM2.5的浓度值;对于高空传输的西南路径,应关注高空水汽的输送情况,以及轨迹高度下降地区即水汽的沉降区是否在潜在源区;西北路径为干冷空气的高空传输,在较接近荆门时轨迹高度才开始明显下降,应关注西北方向近距离潜在源区的地面站点PM2.5的浓度值。 相似文献
4.
武汉作为中部地区高湿度代表城市,大气污染严重,霾天气多发,但有关该地区大气能见度与PM2.5浓度及相对湿度(RH)的定量关系尚不明确。利用2014年9月—2015年3月武汉地区逐时能见度、相对湿度及颗粒物质量浓度观测数据,研究分析了武汉大气能见度与PM2.5浓度及相对湿度的关系,并进行能见度非线性预报初探,得到以下结论:武汉霾时数发生比例高,霾的发生和加重是能见度降低的主要原因;能见度降低伴随大量细粒子产生和累积,这是武汉大气能见度恶化的重要诱因。细颗粒物浓度与相对湿度共同影响和制约大气能见度变化,高湿高浓度时能见度显著下降,湿情景下(RH≥40%),能见度恶化主要是由湿度增高诱使细颗粒物粒径吸湿增长导致其散射效率增大造成的。当RH >90%时,能见度随湿度升高成线性递减,相对湿度每升高1%,武汉平均能见度降低0.568 km。而干情景下(RH<40%),能见度迅速降低的关键因素是PM2.5质量浓度升高。在城市大气细粒子污染背景下,能见度与相对湿度成非线性关系,这主要与PM2.5对能见度的影响及吸湿性颗粒物的散射效率变化有关。PM2.5浓度与能见度成幂函数非线性关系,80%≤RH<90%湿度区段下相关性最强。PM2.5浓度对能见度的影响敏感阈值是随着湿度升高而减小的,干情景下能见度10 km对应的PM2.5浓度阈值为70 μg/m3,湿情景下该阈值为18—55 μg/m3。当PM2.5质量浓度低于约40 μg/m3时,继续降低PM2.5可显著提高武汉大气能见度。预报试验表明,基于神经网络方法建立大气能见度非线性预报模型是可行的,预报能见度相关系数为0.86,均方根误差为1.9 km,能见度≤10 km的TS评分为0.92。网络模型具有较高预报性能,对霾的判别有较高准确性,为衔接区域环境气象数值预报模式,建立大气能见度精细化动力统计模型提供参考依据。 相似文献
5.
2010年11月16日至12月17日在南京、常州、苏州三城市设置采样点,24 h采集大气PM2.5样品,并测定其水溶性无机离子和元素的浓度,在此基础上讨论PM2.5及无机组分的时空分布特征。结果表明,采样期间,PM2.5污染较严重,且苏州最重,常州次之,南京最轻,南京、苏州、常州日均浓度分别是国家二级标准(75 μg/m3)的1.44、2.32、1.53倍;三市PM2.5离子组分中,阴离子均以SO42-和NO3-为主,阳离子以Ca2+和Mg2+为主;苏州Na+和Cl-之间的相关性较高,其受到海盐输送影响较大;三城市PM2.5中Ca是最主要元素,Al次之。运用主成分法分析南京、常州和苏州PM2.5的来源可知,三城市PM2.5受多个污染源影响,包括生物质燃烧、地表扬尘、五金工业及汽车尾气排放等。 相似文献
6.
依据一种基于建筑用地比例和土地利用信息熵的城乡站点划分方法,将西安市环境与气象站点划分为城区、郊区和两类乡村站,讨论其PM2.5的城乡分布特征及与城市热岛效应强度(Urban Heat Island Intensity,UHII)间的相关关系。结果表明,不同季节西安市呈现不同的PM2.5城乡分布特征和日变化特征,两类乡村站点PM2.5差异明显且下风向乡村站点(乡村D)对应的UHIID对城区和乡村的影响程度大于上风向乡村站点(乡村U)对应的UHIIU。在城区较多本地排放的影响下,乡村PM2.5浓度与 UHIIU(或UHIID)相关系数均大于城区。随着UHIID的增加,城乡PM2.5相对浓度差值(RUPIID)整体呈下降趋势且UHIID与RUPIID在春夏秋季显著负相关。UHIID增大,城区近地面PM2.5的水平扩散能力减弱,但PM2.5的垂直扩散能力较乡村更强,从而UHIID通过影响PM2.5的传输扩散特征,进一步影响西安市RUPIID。 相似文献
7.
针对地面站点稀疏不足以提供高空间覆盖、高空间分辨率的面域PM2.5数据支撑区域细颗粒物污染防治的问题,以湖北地区2015-2017年的MODIS卫星遥感气溶胶光学厚度(AOD)产品数据为主预测量,结合温度、湿度、风速、压强等气象参数和植被指数数据等辅助预测量,建立了AOD-PM2.5关系逐日变化的线性混合效应(LME)模型,用于估算湖北地区的PM2.5浓度水平.利用十折交叉验证方法进行了模型精度评估.结果表明:1)2015-2017年的交叉验证R2分别达到0.89、0.85和0.88,利用MODIS AOD数据反演近地面PM2.5质量浓度的线性混合效应模型能很好地用于区域细颗粒物遥感监测;2)省内PM2.5质量浓度空间差异显著,鄂东、鄂南和鄂北高,鄂西北和鄂东南低;3)全省PM2.5估算时空数据年均值呈下降态势,分别为65.6±39.8、57.1±34.1和48.1±28.3 μg/m3,各市除随州、咸宁2016、2017年年均值持平外,都呈下降趋势. 相似文献
8.
2018年1月,利用颗粒物采样器采集武汉市大气PM2.5样品并进行水溶性无机离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的分析.结果表明,NO3-、SO42-、NH4+是PM2.5中最主要的3种水溶性无机离子,除Mg2+与Ca2+外,PM2.5与WSⅡs (水溶性无机离子)之间的相关性显著,且移动源贡献占主导地位.阴阳离子平衡表明武汉市冬季灰霾期PM2.5呈中性或弱酸性.通过混合单粒子拉格朗日综合轨迹模式模拟并采用分层聚类得出了4种主要的后向气流轨迹及相应的PM2.5和水溶性离子浓度,结果表明区域传输对此次灰霾期影响较大. 相似文献
9.
南京市城市不同功能区PM10和PM2.1质量浓度的季节变化特征 总被引:1,自引:0,他引:1
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10和ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1和ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10和ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。 相似文献
10.
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10和ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1和ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10和ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。 相似文献
11.
自2014年以来,中国细颗粒物(PM2.5)浓度大幅度下降,但臭氧(O3)浓度逐年缓慢上升,厘清PM2.5和O3(P-O)相关性尤为关键.在本研究中,2014—2019年北京和南京PM2.5年均质量浓度下降幅度分别为-6.86和-6.15 μg·m-3·a-1;而日最大8小时平均O3质量浓度(MDA8 O3)年均增长幅度为1.50和1.75 μg·m-3·a-1.研究期间,北京地区MDA8 O3质量浓度小于100 μg·m-3,P-O呈负相关;而当质量浓度大于100 μg·m-3时,P-O为正相关.通过Pearson相关系数研究P-O两者相关性.在两个城市每月相关性分析中,在每日时间尺度5—9月为强的正相关;而小时时间尺度11月至次年2月趋于负相关.在北京,P-O每月和季节相关性变化大于南京.在日变化中,夏季在16时为强的正相关,春秋两季在13—17时为弱的正相关,而在春、秋和冬季8时,却为强的负相关. 相似文献
12.
2014年3月13日至4月20日在福建三明市利用PM2.5中流量采样器采集大气中PM2.5膜样品,测定了PM2.5的质量浓度,并用热/光碳分析仪和离子色谱分析了其组分变化特征.结果表明,三明市观测期间PM2.5的平均质量浓度为73.61±0.73 μg/m3,有机碳(OC)和元素碳(EC)的平均质量浓度分别为7.26±1.00和5.63±0.27 μg/m3,水溶性离子中SO42-、NH4+、NO3-和Na+的质量浓度分别为18.08±12.19、4.18±3.56、2.77±1.16和2.73±0.23 μg/m3,总和占总水溶性离子的87.76%.结合后向轨迹分析了福建三明市的污染物来源特征.该地区OC/EC的平均比值小于2,SOC(二次有机碳)生成量很少,主要以一次有机污染物为主,OC、EC与K+的相关性分析表明OC、EC与K+的来源相近,可以判断OC、EC绝大部分来源是生物质燃烧产生的污染物.在水溶性离子分析中,观测期间NO3-/SO42-为0.159±0.02,表明三明市主要以固定源为主,机动车辆等移动源贡献较少. 相似文献
13.
利用潮州市2014—2020年空气质量逐小时质量浓度数据,分析了PM2.5质量浓度的年、月、日变化特征,并结合相应时段的潮州国家站气象资料,分析了PM2.5质量浓度与气象要素的关系。结果表明:2014—2020年潮州市区PM2.5年平均质量浓度、超标出现日数均呈下降趋势。PM2.5质量浓度具有明显的月和季节变化特征,其峰值出现在3月、谷值在6月,秋冬春季的质量浓度较高及超标日较多,尤其是1—4月份,需加强PM2.5污染防控。二级和轻度污染质量浓度的日变化呈双峰型分布,主峰在20:00,次峰在01:00;中度污染质量浓度出现3个峰区,第1峰在01:00、第2峰在21:00、第3峰在09:00,各级最低谷均出现在14:00—15:00。各级质量浓度对应的气象条件有较大差异,其中一级时平均雨量较大、气温较高、风速较大;超标时平均雨量较小、气温较低、风速较小;二级处于一级和超标之间。日雨量1 mm以下、平均气温15~20℃之间、风速≤1.5 m/s时,平均质量浓度及超标率较高。西风及静... 相似文献
14.
长三角4个省会(直辖市)城市(上海、南京、合肥、杭州)中,合肥与南京的PM2.5浓度演变有较高的一致性。应用聚类分析的方法对2013-2015年合肥非降水日(日降水量低于10 mm)100 m高度(代表近地层)和1000 m高度(代表边界层中上部)的72 h后向轨迹进行分类,结合合肥2013-2015年PM2.5日均浓度资料,探讨近地层和边界层中上部输送轨迹与长三角西部PM2.5浓度的关系。近地层和边界层中上部分别得到7组和6组不同的后向轨迹;不同输送轨迹对应的PM2.5浓度、重污染(重度以上污染,PM2.5日均浓度大于150 μg/m3)天数、能见度、地面风速、相对湿度等都有显著不同,尤其是在近地层。100 m高度,平均长度最短、来向偏东的轨迹组对应的PM2.5浓度均值最高(约是组内均值最低值的2倍)、重污染天数最多,且占比最高(30%),重污染日对应的气流在过去72 h下降高度均值仅28 m,明显低于其他PM2.5污染等级日;来向偏西北、长度较短的轨迹组,PM2.5浓度均值和重污染天数为第2高,这一类轨迹占比14%,气流到达本地前存在明显的下沉运动,反映了远距离输送加剧本地PM2.5重污染的特征。这两类轨迹常对应PM2.5日均浓度的上升。PM2.5平均浓度最低的2个轨迹组分别是来自东北和西南的较长轨迹组,所占比例分别为6.4%和10.3%,这2类轨迹往往对应着PM2.5日均浓度下降。1000 m高度的结果与100 m高度结果类似,但PM2.5平均浓度的组间差异不及100 m高度,与2001-2005年PM10浓度与输送轨迹的关系不同。对3 a中84个重污染日两个高度的后向轨迹进行聚类,近地层和边界层中上部各得到7类和6类PM2.5重污染日的天气形势。近地层92%的重污染日对应的海平面气压形势场上,从华北到华东属于均压区,气压梯度小,轨迹来向以偏东到偏北方向为主,垂直方向延伸高度在950 hPa以下。1000 m高度,77%的重污染日属于相对较短的轨迹组,对应的850 hPa高度场特征为从中国西北(新疆)到东南受高压控制,长三角或位于高压底部,或位于两高压之间的均压区。这对PM2.5浓度预报有较好的指示意义。 相似文献
15.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。 相似文献
16.
对2017年11月1日—2018年1月31日与2018年11月1日—2019年1月31日连续两年青岛市大气PM1进行监测,获取了PM1中含碳组分的变化趋势,结合国控站点监测数据和气象条件,分析了秋冬季PM1来源.结果表明:2017、2018年秋冬季观测期间PM1日均质量浓度分别为40.58±25.98、42.55±25.05 μg/m3;霾日质量浓度分别为84.71±16.70、81.52±18.39 μg/m3.与2017年相比,2018年同期PM1质量浓度增长4.85%,霾日下降3.76%.2017年霾日PM1中OC、EC质量浓度分别为13.67±3.95、3.95±1.02 μg/m3,2018年分别为16.48±6.34、3.34±1.16 μg/m3.与2017年相比,2018年霾日OC质量浓度增长20.56%,EC下降15.44%.2017、2018年霾日SOC质量浓度分别是非霾日的1.28和2.15倍,表明霾污染发生时易发生有机碳二次转化.含碳组分主成分分析均解析出3个因子.因子1解释变量均最大,分别为58.98%、67.14%,其表征含碳组分主要源于生物质燃烧、燃煤、道路扬尘及汽油车尾气等排放源.由后向气流轨迹分析得出,2017、2018年秋冬季气团轨迹多起源于内蒙古,经河北、天津、山东等省市抵达青岛. 相似文献
17.
利用WRF-Chem大气化学模式,选择2015年12月中旬发生在我国的大范围空气污染过程,在采用同样化学方案条件下,针对模式中不同物理过程及其参数化方案开展了地面PM_(2.5)预报的敏感性试验。结果表明:该模式能较好展示此次PM_(2.5)污染的演变过程,与实况也较接近,但对青海经宁夏至内蒙的PM_(2.5)高值区出现了漏报现象,这可能是模式外边界未对污染物做更新所致。对地面PM_(2.5)的预报,各物理过程的敏感度不同,边界层(含近地面层)过程的影响要明显大于积云对流及微物理过程的影响,不同的参数化方案会造成不同的预报误差。边界层过程QNSE和与其配套的近地面层方案的组合是预报的较佳组合;而TEMF和与其配套的组合以及ACM2和Pleim-X的组合则不佳。合理的物理过程参数化方案有助于提高PM_(2.5)预报质量。模式预报对排放源也有适应过程,其Spin-up时间较气象要素长。 相似文献
18.
通过采集武汉市土壤风沙尘、建筑水泥尘、城市扬尘、餐饮源、生物质燃烧源、工业煤烟尘和电厂煤烟尘等7类源样品,并分析其碳组分、水溶性离子组分和无机元素组分,建立PM10和PM2.5源成分谱.研究表明,地壳元素Si、Ca、Al以及Fe等是土壤风沙尘的主要特征组分,其中Si是含量最高的成分,也是土壤风沙尘的标识组分.无组织建筑水泥尘中Si和Ca元素含量较高,将Ca元素作为无组织建筑水泥尘区别其他源类的重要元素,而有组织建筑水泥尘中OC、SO42-含量比无组织建筑水泥尘高.城市扬尘中Ca的含量相对较高,表明城市扬尘受到建筑水泥尘影响较多.生物质燃烧源成分谱中OC的含量远高于成分谱中其他组分,另外Cl-和K的平均含量也较高,K一般为生物质源的特征元素. 相似文献
19.
为了全面分析浙江省不同区域能见度变化基本特征及影响机理,基于杭州、宁波、温州3个国家基本气象站2013-2014年逐时能见度观测资料,比较分析了3市能见度变化的基本特征。发现3市不同等级能见度出现频率基本一致,随着能见度等级的提高,出现频率逐渐降低;从能见度的日变化来看,07时(北京时)前后最低,之后缓慢上升,14-15时达到最高,随后逐渐下降;全年有两个能见度较低时段,分别出现在12月-次年2月和5-6月;总体而言,宁波能见度最优,杭州和温州大体相当。功率谱分析结果表明,3市能见度均有显著的日周期,高频波段呈现出多个显著谱峰,低频波段存在若干显著谱峰。进一步开展机理分析,发现相对湿度和PM2.5浓度是调制大气能见度的关键因子,相对湿度增大、PM2.5浓度升高导致能见度降低。在同一相对湿度等级下,初始阶段能见度随PM2.5浓度的升高迅速降低,到达“拐点”之后降低速率趋于缓慢。在同一PM2.5浓度水平下,相对湿度越大,能见度越低,说明水汽对能见度也有重要影响。基于相对湿度和PM2.5浓度两个因子,采用非线性拟合方案构建了大气能见度定量统计模型,总体而言模型拟合效果较好。最后针对研究中存在的不足和未来值得进一步发掘的科学问题进行了讨论。 相似文献
20.
利用哈尔滨市2014—2016年逐日空气质量指数(AQI)数据,结合同期气象观测资料,分析了哈尔滨市空气质量的变化特征、主要污染物及与主要气象要素之间的关系。结果表明:近3 a间,哈尔滨空气质量为良级别的天数最多,占47%,达到污染级别的天数占31%,2016年空气质量最佳,优良级别的天数达到284 d,占全年78%;春夏季AQI指数较低,秋冬季AQI指数明显偏高,9月空气质量全年最佳,1月空气质量最差; PM_(2. 5)是造成哈尔滨空气污染的最主要污染物,其次是PM10、NO_2和臭氧8 h(O3-8 h); AQI与气压之间以正相关为主,秋冬季最为显著;与风速主要表现为负相关,冬季尤为显著;与气温的关系受到采暖的干扰差异较大,年尺度及秋冬季呈负相关,月尺度呈正相关;与降水日数呈负相关;与相对湿度冬季表现为显著正相关,而5—9月为负相关。 相似文献