首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
The effect of the formation of a major subglacial drainage channel on the behaviour of the subglacial drainage system of Haut Glacier d'Arolla, Switzerland, was investigated using measurements of borehole water level and the electrical conductivity and turbidity of basal meltwaters. Electrical conductivity profiles were also measured within borehole water columns to identify the water sources driving water level changes, and to determine patterns of water circulation in boreholes. Prior to channel formation, boreholes showed idiosyncratic and poorly coordinated behaviour. Diurnal water level fluctuations were small and driven by supraglacial/englacial water inputs, even when boreholes were connected to a subglacial drainage system. This system appeared to consist of hydraulically impermeable patches interspersed with storage spaces, and transmitted a very low water flux. Drainage reorganization, which occurred around 31 July, 1993, in response to rapidly rising meltwater and rainfall inputs, seems to have involved the creation of a connection between an incipient channel and a well-established channelized system located further down-glacier. Once a major channel existed within the area of the borehole array, borehole water level fluctuations were forced by discharge-related changes in channel water pressure, although a diversity of responses was observed. These included (i) synchronous, (ii) damped and lagged, (iii) inverse, and (iv) alternating inverse/lagged responses. Synchronous responses occurred in boreholes connected directly to the channel, while damped and lagged responses occurred in boreholes connected to it by a more resistive drainage system. Pressure variations within the channel resulted in diurnal transfer of mechanical support for the ice overburden between connected and unconnected areas of the bed, producing inverse and alternating patterns of water level response. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Dye tracing techniques were used to investigate the glacier-wide pattern of change in the englacial/subglacial drainage system of Haut Glacier d'Arolla during the ablation seasons of 1990 and 1991. Analysis of breakthrough curve characteristics indicate that over the course of a melt season, a system of major channels developed by headward growth at the expense of a hydraulically inefficient distributed system. By the end of the melt season, this channel system extended at least 3·3 km from the snout of the 4 km long glacier and drained the bulk of supraglacially derived meltwater passing through the glacier. The upper limit of the channel system closely followed the retreating snowline up-glacier. Rates of headward channel growth reached c. 65 m d−1, although these rates decreased in the upper 1 km of the glacier where snowline retreat exposed a patchy firn aquifer. It appears that the removal of snow (with its high albedo and significant water storage capacity) from the glacier surface resulted in a dramatic increase in the volume of runoff into moulins, and in the peakedness of daily runoff cycles. This induced transient high water pressures within the distributed drainage system, which caused it to evolve rapidly into a channelised system. It is therefore likely that, at a local scale, channel growth occurred down-glacier from moulins, and that the overall up-glacier-directed pattern of channel formation was caused by the retreating snowline exposing new moulins and crevasses to inputs of ice-derived meltwater. Damping of diurnal melt inputs by storage in the firm aquifer accounts for the slowing of channel growth in the upper glacier. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
Hydraulic roughness accounts for energy dissipated as heat and should exert an important control on rates of subglacial conduit enlargement by melting. Few studies, however, have quantified how subglacial conduit roughness evolves over time or how that evolution affects models of conduit enlargement. To address this knowledge gap, we calculated values for two roughness parameters, the Darcy–Weisbach friction factor (f) and the Manning roughness coefficient (n), using dye tracing data from a mapped subglacial conduit at Rieperbreen, Svalbard. Values of f and n calculated from dye traces were compared with values of f and n calculated from commonly used relationships between surface roughness heights and conduit hydraulic diameters. Roughness values calculated from dye tracing ranged from 75–0.97 for f and from 0.68–0.09 s m‐1/3 for n. Equations that calculate roughness parameters from surface roughness heights underpredicted values of f by as much as a factor of 326 and values of n by a factor of 17 relative to values obtained from the dye tracing study. We argue these large underpredictions occur because relative roughness in subglacial conduits during the early stages of conduit enlargement exceeds the 5% range of relative roughness that can be used to directly relate values of f and n to flow depth and surface roughness heights. Simple conduit hydrological models presented here show how parameterization of roughness impacts models of conduit discharge and enlargement rate. We used relationships between conduit relative roughness and values of f and n calculated from our dye tracing study to parameterize a model of conduit enlargement. Assuming a fixed hydraulic gradient of 0.01 and ignoring creep closure, it took conduits 9.25 days to enlarge from a diameter of 0.44 m to 3 m, which was 6–7‐fold longer than using common roughness parameterizations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The Athabasca Glacier, resting on a rigid bed, provides an excellent example of subglacial ice and till erosion. The presence of a thin mobile till layer is shown by the presence of flutes, saturated till layer, push moraines and ploughed boulders. Cross‐cutting striations, v‐shaped striations and reversed stoss‐and‐lee clasts are indicative of clasts rotating within this layer. As the till moves it erodes the bedrock and clasts within it. A combination of erosion by ice and till produces stoss‐and‐lee‐clasts and generates striations on flutes and embedded clasts, as well as eroding the bedrock into a continuum of smoothed, rounded and streamlined forms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ~210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
First discovered in Poland, glacial curvilineations (GCLs) are enigmatic landforms comprising parallel sets of sinuous ridges and troughs of metres amplitude and around 150 m wavelength, found within kilometres‐wide valleys interpreted as being produced by meltwater flowing subglacially. Their morphological and sedimentary characteristics and association with tunnel valleys has been described for some prominent Polish examples. From these observations the existing hypothesis is that they form as a consequence of erosion by longitudinal vortices that develop in subglacial floods. Here we report, for the first time, GCLs found along the southern sector of the Laurentide Ice Sheet in three northern states of the USA. Using mapping and topographic analysis from high resolution digital elevation models we report observations on their morphological properties and landform associations. We find aspects of their context and morphology difficult to explain using the existing hypothesis. We instead suggest that these glacial curvilineations are produced by subglacial bank and slope failures that locally widen tunnel valleys, or that occur near subglacial lake shorelines. Further investigation is required to test this hypothesis and to ascertain the mechanisms of proposed mass movements, which may have occurred by rotational or translational slope failure or by creep deformation. Our preferred mechanism is that such movements occurred where subglacial water was emplaced over previously perma‐frozen ground. Under such circumstances, sediment blocks thawed by the water may then easily glide over a frozen décollement at low slope angles; analogous to subaerial active‐layer glides in permafrost environments. Permafrost spring sapping may have provided lines of weakness for slope failure. If the requirement for permafrost is found to hold, then GCLs may become an important indicator of the palaeo‐distribution of permafrost. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
中国晚新生代湖泊沉积及其反映的环境概貌   总被引:3,自引:1,他引:3  
在地球历史上湖泊沉积大规模的发育或缺失,都和一定的构造背景和气候环境条件相关。本文依据我国晚新生代以来,湖泊沉积时空规模和分布的变化,来探讨我国大环境的变迁过程。上新世和早更新世我国西部存在许多大湖泊,发育巨厚的湖泊沉积,而东部分布的范围很局限,造成这种情况的原因,除了构造运动的差别外,当时大气环流的形势与今不同,西部的气候条件相当湿润。中—晚更新世西部的大湖大都萎缩,甚至消失,东部却表现出大湖增加的趋势,这显然与青藏高原的迅速隆起、东亚季风的加强有关。末次冰期以来,对应于冰期、间冰期的气候变化,不同气候带湖泊的响应差异颇大,既表现出区域环境的特点,也有全球变化事件的反映。  相似文献   

10.
This paper deals with the geology and geochemistry of the Gacun and Laochang large-sized marine volcanic rock-type Ag deposits in the Sanjiang (Tri-River) area of southwestern China and of the continental volcanic-subvolcanic rock-type Ag deposits in the Tianshan area of Xinjiang, and in the East area, China. It is considered that the marine volcanic rock-type Ag deposits occur mainly in the second-ordered volcano-sedimentary basins developed in island-arc and rift tectonic environments. The Ag deposits show an obvious zonation, with vein-network mineralization in the lower parts and hot water sedimentary rock-hosted stratified mineralization in the upper parts. From the Earth's surface downwards the ore-forming elements follows the order of As(Au))→Ag, Pb, Zn→Cu. The whole rock Rb-Sr isotopic isochron age of layered orebodies in the Gacun deposit is 204±14 Ma, indicating that the main stage of mineralization is Late Triassic in age. The continental volcanic-subvolcanic (porphyry) rock-type Ag deposits were formed later than the country rocks. The ores exhibit disseminated, veinlet disseminated, network and lumped structures. In addition, this study also deals with the geochemical characteristics of the continental volcanic-subvolcanic rock-type Ag deposits and the relations between Ag deposits or silver itself and fluorite, halogen-family elements and manganese.  相似文献   

11.
本文对黄土高原和天山黄土区表土进行系统的岩石磁学和粒度测试分析,探讨了表土磁性特征及其环境意义,结果表明表土中的强磁性矿物均为磁铁矿和磁赤铁矿,弱磁性矿物为赤铁矿和纤铁矿或针铁矿,黄土高原黄土地层中的磁赤铁矿至少有部分属于风积成因.黄土高原表土中磁化率与频率磁化率呈良好的正相关,气候作用是主导黄土高原表上磁化率增强的主...  相似文献   

12.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

13.
The chemical composition of sediment sampled from a network of ice boreholes contacting the bed of the ablation zone of the Greenland Ice Sheet is compared to the composition of intact bedrock clasts. This sediment is enriched in silica and depleted in reactive cations compared to the underlying bedrock. In order to test whether these differences result from grain size biases either in sample collection or due to natural sorting, sediment samples were analyzed by grain size aliquots. Enrichment of silicon and depletion of cations is consistent across grain size classes and the compositions of bedrock and subglacial sediment are statistically separate. The difference in composition between subglacial sediment and rock aligns closely with the composition of dissolved solutes in waters sampled from the same field sites and is dissimilar to the composition of the sites' suspended sediment. This implies that chemical weathering rather than disproportionate physical removal of friable minerals is responsible for the compositional differences between rock and sediment. Mass balance analysis implies 3–10% of the sediment's mass is lost to solute dissolution, with approximately double that amount precipitated as clay minerals (a large portion of which may have been physically expelled). This result implies that temperate ice sheet subglacial environments may be more chemically active than previously realized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
宋高  王海雷  郑绵平  李军 《湖泊科学》2015,27(5):962-974
于2008和2012年先后2次从西藏阿里和那曲地区61个不同水体,包括不同盐度的湖泊、湿地、浅水坑和河流等,共采集了78个水体表层沉积物样品,用以研究该地区现生介形类的生态分布及其环境指示意义.经鉴定,阿里和那曲地区现生介形类共计11属38种.除Ilyocypris neoaspera等5个种外,本次调查的介形类各属种均在湖泊中出现,尤以Limnocythere dubiosa的总壳瓣数最为丰富.Ilyocypris属中除Ilyocypris subdunshanensis和Ilyocypris xizangensis外,其余各种均喜浅水坑的小型浅水环境.Leucocythere dilitata、Limnocythere dubiosa、Limnocytherellina kunlunensis和Eucypris rischtanica为该地区的广盐种.其中Limnocythere dubiosa和Leucocythere dilitata适应盐度范围最广,在不同盐度的各类水体中均有出现.本次研究中的介形类均喜碱性水体,在p H值为8~9的水体中介形类各属种的丰度值达到最大.  相似文献   

15.
Water contents have been measured in basaltic glasses from submarine and subglacial eruption sites along the Reykjanes Ridge and Iceland, respectively, in order to evaluate the hypothesis of Schilling et al. [Phil. Trans. R. Soc. London A 56 (1980) 147-178] that hot spots are also wet spots. Having erupted under pressure the water contents measured in these samples are potentially unaffected by degassing. After correcting these water contents for the effects of crystallisation (to give H2O(8) values) they indicate that the concentration of water in the source regions increases from 165 ppm at the southern end of the Reykjanes Ridge to between 620 and 920 ppm beneath Iceland. This suggests that Iceland is a wet spot and the H2O(8) values indicate that its influence on basalt compositions increases northwards along the Reykjanes Ridge from ∼61°N (650 km from the plume centre) towards Iceland. The existence of wetter Icelandic source regions have important implications for mantle melting, as enrichments of this magnitude depress the mantle solidus, increasing the degree of melting at a given temperature. Therefore the enhanced rates of volcanism on Iceland may be a result of wetter sources in addition to a thermal anomaly beneath Iceland.  相似文献   

16.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Two carbonate deposits are identified on the exposed bedrock surface in the forefield of Glacier de Tsanfleuron, Switzerland: macrocrystalline sparite and microcrystalline micrite. Comparison of the distributions of these forms with lee-side slope facets identified by high-pass filtering of a flow-parallel bedrock profile at a range of frequencies reveals two significant results. First, while the distribution of sparite is consistent with formation in the lee side of subglacial bedrock hummocks, that of micrite is not. This contrasts with previous investigations in which both sparite and micrite have been considered to form by mineral concentration and precipitation during the refreezing of regelation-related basal meltwaters in the lee side of bedrock hummocks. Alternative mechanisms of micrite formation involving carbonate deposition and/or precipitation within subglacial bedrock hollows are proposed. Second, the distribution of sparite is most strongly correlated with the distribution of lee-side slope facets identified by filtering at a frequency equivalent to a hummock wavelength of c. 0·1 m. This correspondence indicates empirically that pressure-related melting and refreezing (regelation) operates most effectively around bedrock hummocks that are shorter than c. 0·1 m. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Long-term data (2003–2015) on meltwater chemistry, mass balance and discharge of a benchmark glacier (Chhota Shigri Glacier, India) were studied to determine any association between these variables. To infer the factors governing the alteration of chemical weathering processes in glacierized basins, multi-annual records of the hydrochemical indices (Ca2++Mg2+/Na++K+) and the C-ratio were also examined. A succession of negative mass balance years has resulted in a decline in solute concentrations in the runoff, as discharge has increased. The (Ca2++Mg2+/Na++K+) and C-ratio are highest during periods of negative annual mass balance, when the spatial extent of the channelized drainage system increases. Conversely, these ratios are lowest in positive mass balance years, when the spatial extent of the channelized drainage system decreases, and chemical weathering in the distributed drainage system becomes more dominant. This paper is the first to show the inter-annual linkages between meltwater chemistry, mass balance and discharge for a valley glacier.  相似文献   

19.
The outline and trend of 6566 subglacial bedforms in the New York Drumlin Field have been digitized from digital elevation data. A spatial predictive model has been used to extend values of bedform elongation over an area measuring 200 km × 110 km. The resulting surface is used in conjunction with depth‐to‐bedrock data and an assumed duration of ice residence to test three proposed controls on bedform elongation. Upon comparison, the resulting display of morphometry is best explained by differences in ice velocity across the field of study. The existence of multiple zones of fast‐moving ice located along the southern margin of the Laurentide Ice Sheet is implied by the observed patterns of bedform elongation and orientation. We present two interpretations that are consistent with the observations. First, enhanced basal sliding caused by decreasing effective pressure near a calving margin is suggested as a possible mechanism by which localized fast ice flow is initiated and maintained. Second, topographically controlled ice streams likely occupied the fjord‐like troughs of the Appalachian Upland northern rim. Contrary to previous understanding of the Laurentide southern margin in New York State, the resulting palaeoglaciological reconstruction illustrates a dynamic mosaic of ice stream and/or outlet glacier activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号