首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase of salt intrusion in recent years in the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, has threatened the freshwater supply in the surrounding regions, especially the cities of Zhongshan, Zhuhai in Guangdong Province and Macau. A numerical modeling system using nested grids was developed to investigate the salt transport mechanisms and the response of salt intrusion to changes in river discharge and tidal mixing. The steady shear transport induced by estuarine circulation reaches maximum and minimum, respectively, during neap and spring tides, while the tidal oscillatory transport shows an opposite pattern. The net transport is landward during neap tides and seaward during spring tides. The salt intrusion length responding to constant river discharges generally follows a power law of ?0.49. The dependence of salt intrusion on tidal velocity is less than that predicted by theoretical models for exchange flow dominated estuaries. The response of salt intrusion to change in tidal velocity depends largely on river discharge. When river flow increases, the impact of tidal velocity increases and the phase lag of response time decreases. The asymmetries of salt intrusion responding to increasing and decreasing river discharge (tidal velocity) are observed in the estuary.  相似文献   

2.
The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s?1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but generally underestimate the observed currents and density stratification. The model discrepancies reflect the use of spatially mean wind forcing and spatially and monthly mean surface heat flux and the inability of the coarse model horizontal resolution (~500 m) to resolve narrow channels and straits.  相似文献   

3.
This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium‐sized watersheds (72 000 and 66 000 km2 of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi‐arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m3 s?1) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi‐arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.  相似文献   

5.
A suite of instruments was deployed in a coastal wetland ecosystem in the Albemarle estuarine system, North Carolina (USA), to characterize wind‐driven transport of saltwater through a constructed (man‐made) channel. Flow velocity, electrical conductivity, and stage were measured in a representative channel over a 2‐month period from May to July 2014, during which 4 wind tides were observed. Collected data show that thousands of metric tons of salt were advected through the channel into coastal wetlands during each event, which lasted up to 4 days. The results reveal that as much as 36% of advected salts accumulated in the wetlands, suggesting that the cumulative effects of these events on the health of coastal wetlands in the Albemarle system may be substantial due to the abundance of constructed channels and the frequency of wind‐driven tidal events. This study is the first to quantify wind‐driven salt fluxes through constructed channels in coastal wetland settings.  相似文献   

6.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

7.
Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.  相似文献   

8.
An analysis of observational data suggests salt exchange in a sinuous coastal plain estuary is significantly impacted by counter-rotating residual horizontal eddies formed by channel curvature in meandering channels. The parts of adjacent eddies that advect material downstream follow the deep part of the channel where the flow continually criss-crosses from one side of the channel to the other and follows a relatively unimpeded trajectory to the sea. On the other hand, the parts of adjacent eddies that advect material upstream cross the channel at a different location where it encounters a series of shoals. In this case, the resulting upstream transport of salt is relatively inefficient and retards the rate at which salt can disperse upstream into the estuary. The strength of these circulations is modulated by the spring/neap cycle, allowing for a stronger gravitational mode of exchange to develop near neap tides, but has minimal impact on the length of the salt intrusion. It is suggested that the impeded upstream salt transport accounts for the observation that an impulse of river discharge advects a given isohaline 10 km downstream in 20 days, but that after the impulse, 70 days are required to return the isohaline to a similar position, counter to the notion of a simple dependence of intrusion length on river discharge.  相似文献   

9.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

10.
The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.  相似文献   

11.
An artificial channel was opened in 1994 between the microtidal Peel–Harvey Estuary and the Indian Ocean to increase tidal exchange and thus ameliorate the problems of eutrophication. Although this greatly reduced macroalgal and cyanobacterial growths and the amount of particulate organic matter, our data indicate that, contrary to managerial expectations, the benthic environment has deteriorated. Thus, although macroinvertebrate density has declined as predicted, taxonomic distinctness (Δ*) has also declined and species composition has become more variable. Macroinvertebrate composition has also changed markedly at the species, family and even phylum levels. The Crustacea, the most sensitive of the major macrobenthic taxa to environmental stress, has become proportionally less abundant and speciose, whereas the Polychaeta, the least sensitive, was unique in showing the reverse trend. The benthos of the Peel–Harvey Estuary is thus apparently more stressed than previously, probably due to the multiple effects of a great increase in system use.  相似文献   

12.
ONE D AND TWO D COMBINED MODEL FOR ESTUARY SEDIMENTATION   总被引:3,自引:0,他引:3  
1INTRODUCTIONThefluvialprocesinanestuaryiscomplicatedundertheactionofrunof,tidalflow,windinducedcurentandwaveetc.Especialy,...  相似文献   

13.
Numerous estuaries of the world have been strongly modified by human activities.These interferences can make great adjustments of not only sediment transport processes,but also the collective behavior of the estuary.This paper provides a typical case of a heavily modified coastal plain estuary of Sheyang on the China coast,where a sluice barrage was built in 1956 to stop the intrusions of storm surges and saline water.Four sets of instrumented tripods were simultaneously deployed along a cross-shore transect to continuously observe near-bed flow currents and sediment transport.The in-situ surveys lasted over a spring and neap tide cycle when a strong wind event occurred in the neap tide.Comparisons of flows and sediment transport between tide-dominated and wind-dominated conditions demonstrated the important role of episodic wind events in flows and sediment transport.The wind-induced currents,bottom stresses,and sediment transport rates were significantly greater when wind was present than corresponding quantities induced by the tides.The long-shore sediment transport induced by winds exceeds the cross-shore component,especially near the river mouth bar.These results indicate the noticeable importance of wave-dominated coastal processes in shaping topographic features.A regime shift of estuarine evolution under highly intense human forcing occurs from fluvial to marine processes.This finding suggests that the management strategy of the estuarine system should focus on the restoration of estuarine processes,rather than the present focus on inhibition of marine dynamics.  相似文献   

14.
In order to understand the various processes responsible for siltation in the entrance channel and in the sand bar area near the old Mangalore port, variations in temperature, salinity, suspended sediment load, currents and extinction coefficient in the Netravathi-Gurpur Estuary and in the sea near the sand bar were studied in relation to tides during monsoon, post-monsoon and pre-monsoon seasons. The hydrographic characteristics in the estuary showed marked seasonal changes and were influenced by tides to a considerable extent. In the sea, seasonal variations of these parameters were less marked, and the effect of tides was not significant. Salinity and temperature values in the estuary and in the sea were maximum during the pre-monsoon season in general. The suspended sediment load values were always higher in the estuary than in the sea and they were found to be maximum in the monsoon season. Currents in the estuary were controlled by tides as well as by the river flow, particularly in the monsoon season, whereas currents in the sea mostly followed the general circulation pattern. Extinction coefficient values were higher in the monsoon season both in the estuary and in the sea due to increase in the particulate matter from inland drainage.  相似文献   

15.
《国际泥沙研究》2020,35(4):417-429
The aim of the current study was to determine the nature of the seasonal variability of the Suspended Particulate Matter (SPM) fluxes from the drainage basin to the estuary in a macrotidal region (Northeastern Brazil), and the estuarine response to a seawater intrusion regarding sediment deposition, which will support the understanding of the global transport of materials at the continent-ocean interface. Thermohaline structure data was acquired using a Conductivity, Temperature, and Depth (CTD) probe with a sampling frequency of 4 Hz. Suspended particulate material was measured by gravimetric measurements applied to exact filtered volume samples. The outflows were measured through the use of an Acoustic Doppler Current Profiler (ADCP) with frequency of 1.5 MHz. The horizontal thermal and saline gradients varied from warmer and less saline waters (2014) to cooler and saline waters (2015). The gradient behavior when linked to volume transport and SPM flows, suggests a minimization of the fluvial flows in 2015, easing the advance of coastal water (CW) towards the inner estuary, leading to an inversion of the baroclinic pressure gradient. The bottom saline front, generated by the entrance of coastal water masses, caused an increase in SPM concentrations due to increased fluid density, resuspension of previously deposited sediment, and erosion of banks. High concentrations of SPM indicate higher volume transport suggesting a hydraulic barrier due to the change/inversion of the baroclinic pressure gradient, resulting in water and material retention. Material deposition was observed during neap tide, while during spring tide the material is resuspended, increasing the concentration, generating cycles of deposition and erosion during the neap-spring tides. The sediment in suspension that reach the estuary, even with low fluvial volume, stay in this environment forming new islands because of deposition. High deposition rates or sediment cycling, if generated by the hydraulic barrier, may indicate that the flows of SPM from the continental drainage to the estuary and adjacent continental shelf are interrupted and the residence time is increased.  相似文献   

16.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

17.
In this paper a novel series of field measurements are presented, which are the first to elucidate the processes influencing siltation in Botlek Harbour. Botlek Harbour is situated at the limit of saline water intrusion in the Rotterdam Waterway. Normally, after the ebb tide fresher river waters are found in the Rotterdam Waterway at the location of Botlek Harbour. On the flooding tide, the tip of the salt wedge is advected along the Rotterdam Waterway towards the mouth of Botlek Harbour. Hence on flood, a lock-exchange mechanism operates between Botlek Harbour and the Rotterdam Waterway. On the flood tide, when there is a supply of suspended particulate matter (SPM) associated with the presence of the estuarine turbidity maximum (ETM) at the mouth of the harbour, the survey data show exchange of SPM into the harbour. This lock-exchange process is found to be the dominant cause for SPM transport into the harbour. This is further substantiated by an analysis of the mass transport mechanisms. In this analysis, the vertical profiles of the instantaneous velocity, salinity and SPM concentration fields, recorded during the surveys, were decomposed into advective and dispersive transport components. The results of this analysis indicate that the correlation between the lock-exchange mechanism on the flood tide with the availability of SPM for exchange and efficient trapping, dominate the total exchange of SPM (97%). Hence, the increase in measured near-bed SPM concentration within the harbour is ascribed to tidal advection of saline water and the ETM along the Rotterdam Waterway. Tidal advection controls the density difference between the estuary and harbour, as well as the availability of SPM for exchange at the entrance to Botlek Harbour. The location of the ETM at the tip of the salt wedge is a key factor in supplying SPM to Botlek Harbour. Consequently the timing of the availability of SPM at the mouth of the harbour needs to be considered in siltation studies. The survey data suggest that Botlek Harbour basin has a 100% trapping efficiency. Analysis of 5 months of data, from a measuring rig located within the harbour, show excursions of the limit of the salt wedge and ETM. These excursions are likely to affect siltation of upstream harbours. Salinity-induced density gradients control the transport and subsequent trapping of SPM in the estuary in close proximity to the harbour entrance, the exchange of SPM between the estuary and harbour, and the trapping of SPM in the harbour basin.  相似文献   

18.
This study investigates the hydrodynamic characteristics of the lower, middle, and upper sectors of a highly stratified estuary, the Itajaí-Açu river estuary (south of Brazil ∼27° S/48.5° W). The study is based on a 25-h field campaign with three sampling stations positioned at 2, 17, and 38 km inward from the river mouth, during low river discharge condition and spring tide. The experimental data gathered was reduced and analyzed in terms of distribution of variables in time and space tide average vertical profiles and decomposition of the advective transport of salt and suspended particulate matter (SPM). Tidal range was nearly constant along the estuary, presenting time lag of about 2 h between lower and upper estuary. The ebb discharge peaks were about twice the discharge flood peaks and occurred simultaneously. The tide was the main determining agent in the lower estuary, where currents, salt stratification, and SPM distributions presented a repetitive behavior. In the middle estuary, the tide effects were also observed, but the presence of saline waters decreased along the time due to increasing river discharge during the campaign. The distribution of SPM in the mid- and upper estuary presented patched pattern not associated with tides and may be attributed to short-term flood contributions of tributaries. Currents presented ebb dominance in all three sectors; in the middle and upper estuary, they presented also a time asymmetry, with ebb currents longer than flood. The advective transport of salt in the lower estuary was upstream, with dominance of gravitational circulation term. In the mid-estuary, there was practically no transport, with balance between fluvial discharge (downstream) and tidal correlation (upstream). The advective transport of SPM was upstream in the lower estuary and downstream in the mid- and upper estuary, being dominated by gravitational circulation in the former and fluvial discharge in the others.  相似文献   

19.
In this paper we discuss the links between saltwater intrusion and subtidal circulation in the Changjiang Estuary based on a 3D numerical model. We restricted our study mainly to the three major outlets of the estuary: the South Passage, the North Passage, and the North Channel. Subtidal transport is landward in the South Passage and NNW- or NW-ward on the shoals, whereas it is mainly seaward in the North Passage and North Channel. Such a residual characteristic is caused by the interaction between tide and shallow water depth. Decomposing analysis indicated that Stokes transport is the major mechanism causing this particular residual transport pattern. Under its influence, the South Passage is the most saline outlet and the North Channel is the major route discharging the Changjiang runoff. Results of a tracer experiment indicated that active water mass exchange occurs from the South Passage to the North Passage and finally to the North Channel. Thus, the salinity in each outlet is determined not only by the tidal-averaged diversion ratio around the bifurcation of the South and North Channels but also by the subtidal circulation in the waterways and on the shoals. The northerly wind produces a horizontal circulation around the river mouth, which flows into the estuary in the North Channel and out of the estuary in the South Channel and South Passage. This circulation increases the salinity in the North Channel and decreases it in the South Passage. Recent engineering projects have intensified the landward residual in the South Passage, thereby increasing the salinity in the South Passage and decreasing the salinity in the North Channel.  相似文献   

20.
Intermittently open/closed estuaries (IOCE) are wave-dominated estuaries with entrances that temporarily close to the ocean. Wave–current interactions play a major role in estuary entrance morphodynamics and influence the degree of energy transfer from the ocean into the lagoon. This study utilizes artificial entrance openings of multiple ICOE in Victoria, Australia, to capture continuous hydrodynamic and geomorphic data throughout the opening cycle. We illustrate that water level oscillations in the infragravity (IG) band) are present in the basin during open entrance conditions. IG waves were observed to propagate up to 1.8 km upstream of the mouth while the entrance was open. Our work identifies that changes in cross-sectional area, bed depth at the berm position, and offshore wave height control the magnitude of IG waves within the estuary basin. IG wave magnitude is also tidally modulated and increases with high tides when the nearshore water level is higher. Late during the drainage phase, waves were observed to track the margins of the channel, away from the thalweg, and reach the basin. IG wave energy was highest immediately after the basin had ceased draining and while channel dimensions at the mouth were within 10% of their maximum value. As the entrance aggrades, IG wave magnitude decreases in the absence of energetic offshore wave conditions. We relate the changes in IG wave magnitude and frequency to a six-stage conceptual model of the opening–closure sequence. Within the basin, IG wave energy, height and frequency were also consistently highest closer to the mouth and decreased with distance upstream. Our findings indicate that water level oscillations in the IG band are a persistent feature in IOCE and may be the norm rather than the exception in these systems. As IG waves were captured serendipitously as part of a larger field campaign, future work will focus on instrumenting IOCE to gain high-resolution data to quantify IG wave processes during entrance openings. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号