首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Micaceous soil is believed to be detrimental for civil engineering constructions due to the effect of high compressibility, low compacted density and low shear strength. Individual mica particle has numerous intact mica flakes foliated over each other making it flexible upon loading and rebound upon unloading due to its low hardness and resilient nature. Hence, micaceous soils with mica content more than 10% are considered undesirable for highway pavements, embankments and railway track constructions. When platy mica particles are sufficiently numerous to interact with spherical sand particles, bridging and ordering phenomena are augmented within the soil mass creating unique sand-mica particle orientation (MS microstructure) unlike sand-sand particle orientation (PS microstructure). The current experimental research was conducted to evaluate the variation in stress–strain, pore pressure and effective stress path response of Sabarmati sand under the influence of mica (sand with 30% mica and pure sand) with MS and PS microstructure respectively. Effect of particle crushing on stress–strain and pore pressure response was also studied on Sabarmati sand with MS and PS microstructure. Distinctive macroscopic response was observed in Sabarmati sand with MS microstructure under the influence of mica as well as mica particle crushing.  相似文献   

2.
The small strain shear stiffness G0 of the soil is of interest and importance in both theory and practice. It is expected that for granular materials G0 would slightly increases with over-consolidation ratio (OCR). However, laboratory tests indicate that G0 may decrease with increasing OCR, especially for loose specimens, which is counterintuitive. To explore the underlying mechanism, discrete element method (DEM) is used to investigate the effect of OCR on G0. The DEM simulations successfully capture the laboratory observations. The analyses at the particulate level reveal that the decrease in small strain stiffness is mainly due to the decreases in coordination number and the uniformity of contact force distribution during unloading process.  相似文献   

3.
An application of Artificial Neural Networks for predicting the stress–strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm. About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress–strain behaviour of intact rocks and the complex stress–strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress–strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm, and confining pressures range from 0 to 13.8 MPa.  相似文献   

4.
Whether the critical state friction angle of granular materials depends on grading is a fundamental question of both academic and practical interest. The present study attempts to address this question through a specifically designed experimental program where the influence of particle grading was carefully isolated from other influencing factors. The laboratory experiments show that under otherwise similar conditions, the angle of friction at critical state is a constant independent of grading, but, for a given grading, the angle of friction at critical state is highly dependent on particle shape. This finding suggests that the commonly adopted practice of separately allowing for the effect of particle shape and the effect of grading on critical state friction angle is conceptually inappropriate and, hence, should be taken with caution in geotechnical design to avoid the risk of underestimating safety requirements. The study also reveals that varying particle gradation can impose a marked impact on liquefaction susceptibility of granular soils: Under the same post-consolidation state in terms of void ratio and confining pressure, a well-graded soil tends to be more susceptible to liquefaction than a uniformly graded soil. This variation of liquefaction susceptibility is shown to be consistent with the variation of location of the critical state locus in the compression space and is explainable by the critical state theory.  相似文献   

5.
6.

The published literature has revealed conflicting results regarding the effect of low plastic fines fraction (Ip?≤?5.0%) on the mechanical behavior of sandy soils. For this reason, the use of different sample initial structures as (initial relative density approach, global void ratio index approach, etc.) could explain these different mechanical responses of granular materials. Thus, it is necessary to evaluate the quantitative aspect of the low plastic fines effects on the undrained monotonic response of sand-silt mixtures using the global void ratio approach. To achieve this goal, an experimental testing program through controlled monotonic triaxial tests was carried out on reconstituted saturated Chlef sand containing from 0 to 50% silt with an interval of 10% at three global void ratios (e?=?0.64, 0.66 and 0.68) and subjected to constant confining pressure (σ'3?=?100 kPa). The different samples were reconstituted using two different preparation techniques: DFP and MT. The obtained results show that the low plastic fines content appears as a very relevant parameter in the characterization of the mechanical response of sand-silt mixture samples reconstituted at constant global void ratios, where the steady state shear strength and instability shear strength decreased with the increase in low plastic fines content up to the limiting fines contents (Fc?=?40% and Fc?=?10%) considering both studied initial structures (Dry funnel pluviation and Moist tamping), respectively. Beyond these thresholds fines contents, a reverse trend was observed for all parameters under study. Moreover, the test results indicate that the brittleness index, flow potential (Vf), friction index, equivalent void ratio (e*) and equivalent relative density (Dr*) could be considered as reliable parameters in the prediction of the mechanical behavior of the silty sand soils under study.

  相似文献   

7.
This work consists in estimating the role of climatic conditions in the degradation of two French limestones, tuffeau and Richemont stone, used in the construction and the restoration of the Castle of Chambord, the largest castle in the Loire Valley, France. Meteorological data, air temperature, air relative humidity and rainfall were statistically analysed in combination with stone data from thermal–humidity sensors inserted into the walls. The climatic conditions of the surrounding area were described to assess their role in enhancing the degradation of the stones through three weathering processes: thermal stress, condensation and freezing–thawing. The damage risks due to the weathering processes were taken into account not only through the bulk effects on the stone surfaces, but also their effects were extended to investigate the damage that occurs within the porous structure of the stone. Field observations showed that the main patterns of degradation affecting the stones of the castle are biological colonization and stone detachment in the form of stone spalling and exfoliation. The results of the analysis show that there is no risk of damage to the stones due to thermal stress. Moreover, the two stones experience similar overall trends against freezing–thawing processes. Finally, this study clearly highlights the important role of condensation in the degradation of the stones of the castle.  相似文献   

8.
Tsegaye  Anteneh Biru  Benz  Thomas  Nordal  Steinar 《Acta Geotechnica》2020,15(10):2727-2739
Acta Geotechnica - Stress–dilatancy theories play a central role in the modeling of the plastic dissipation of geomaterials. There exist several mathematical frameworks for describing the...  相似文献   

9.
Wet granular materials are three-dimensionally simulated by the discrete element method with water bridges incorporated between particles. The water bridges are simplified as toroidal shapes, and the matric suction is constantly maintained in the material. A comparison with experimental tests in the literature indicates that the toroidal shape approximation may be one of the best choices with high practicability and decent accuracy. Mechanical behaviours of wet granular materials are studied by triaxial tests. Effects of particle size distributions and void ratios are investigated systematically in this study. The hydraulic limit of the pendular state is also discussed. It gives the capillary cohesion function which is not only determined by the degree of saturation but also positively correlated to relative density and particle size polydispersity and inversely proportional to mean particle size. Furthermore, the capillary strengthening effect is also analysed microscopically in aid of the Stress–Force–Fabric relationship, mainly in fabric anisotropy, coordination number and stress transmission pattern, which revealed the micro-mechanisms of the additional effective stress induced by capillary effect.  相似文献   

10.
Deformation patterns in subduction zones, feeder systems of volcanoes, and rifts are compared and investigated in terms of relations among elastoplastic strain, rheology, pore fluids, and temperature. Regional-scale subduction processes have been explored in segments of the Kuriles–Kamchatka, Izu-Bonin, and Mariana zones. Slab geometry constraints from the 3D velocity structure are used to model the balance of forces in the three subduction zones and to distinguish the regions of predominant push or pull. Stress and strain variations in suprasubduction crust are considered for the case of magma sources beneath the Klyuchevskoy group of volcanoes. Time-lapse (4D) seismic tomography shows crustal magma reservoirs to appear and disappear rapidly as the volcanoes become active or dormant, respectively. This behavior is due to rapid strain changes which cause fast flow of fluids and the ensuing decrease or increase of melting temperature in the magma reservoirs. In addition to subduction zones, stress–strain patterns are modeled for collisional (compressive) settings, with the example of the Altai–Sayan area and the Caucasus, and for the conditions of rifting (extension), in the case of the Vilyui basin. As the modeling shows, formation of a superdeep basin does not necessarily require the crust to stretch twice or more: only 20% stretching in the necking region is enough to produce a 10–15 km deep basin.  相似文献   

11.
Zhou  Wan-Huan  Jing  Xue-Ying  Yin  Zhen-Yu  Geng  Xueyu 《Acta Geotechnica》2019,14(6):1699-1716
Acta Geotechnica - In this study, the effects of particle sphericity and initial fabric on the shearing behavior of soil-structural interface were analyzed by discrete element method (DEM). Three...  相似文献   

12.
Bate  Bate  Nie  Shaokai  Chen  Zejian  Zhang  Fengshou  Chen  Yunmin 《Acta Geotechnica》2021,16(6):1949-1960
Acta Geotechnica - The soil–water characteristic curve (SWCC) of granular materials is crucial for many emerging engineering applications, such as permeable pavement and methane hydrate...  相似文献   

13.
A comprehensive investigation aimed at determining seismotectonic types of destruction and the stress–strain state of the Earth’s crust in the main seismogenerating structures of the Arctic–Asian seismic belt is conducted for the territory of the northeastern sector of the Russian Arctic region. Based on the degree of activity of geodynamical processes, the regional principles for ranking neotectonic structures are elaborated, and neotectonic zoning is carried out based on the substantiated differentiation of the corresponding classes. Within the limits of the Laptev Sea, Kharaulakh, and Lena-Anabar segments, we analyzed I the structural–tectonic position of the most recent structures, II the deep structure parameters, III the parameters of the active fault system, and IV the parameters of the tectonic stress field, as revealed from tectonophysical analysis of Late Cenozoic fault and fold deformations. Based on the seismological data, the mean seismotectonic deformation tensors are calculated to determine, in combination with geological and geophysical data, the orientations of the principal stress axes and to reveal the structural–tectonic regularity for tectonic regimes of the stress–strain state of the Earth’s crust in the Arctic sector of the boundary between the Eurasian and North American lithospheric plates.  相似文献   

14.
15.
地下工程岩体开挖卸载后,围岩体承受的地应力随空间位置呈梯度形式变化。梯度地应力导致岩石的波阻抗呈梯度形式变化,进而影响应力波传播衰减特性。为研究梯度地应力对岩石应力波传播特性的影响,利用自主研发的具有梯度静应力岩石应力波传播试验系统,对红砂岩长试件进行了9种应力梯度工况下的应力波传播试验。通过分析岩石应力波传播速度、波阻抗随应力梯度的变化规律,构建应力波幅值与传播距离、传播时间和应力梯度之间的经验模型,探索梯度应力影响红砂岩应力波传播衰减的机制。结果表明,相同应力梯度工况下,随传播距离增加,应力波形状变化较小,但幅值逐渐减小。随应力梯度增大,岩石各测点区段内应力波传播速度、波阻抗均增大,但增大速率逐渐减缓,相邻测点区段波阻抗差值比先快速增大,后缓慢减小。随传播距离和传播时间增加,应力波幅值均呈指数形式减小;随应力梯度增大,时空衰减系数均呈先快速增大,后缓慢减小趋势变化。随应力梯度增大,相同测点应力波幅值先快速减小,后缓慢变化,在低应力梯度阶段,距离自由端越远的测点幅值衰减速率越快。  相似文献   

16.
Zhang  Fengshou  Li  Mengli  Peng  Ming  Chen  Chen  Zhang  Limin 《Acta Geotechnica》2019,14(2):487-503

In this work, 3D discrete element method modeling of drained shearing tests with gap-graded soils after internal erosion is carried out based on published experimental results. The erosion in the model is achieved by randomly deleting fine particles, mimicking the salt dissolving process in the experiments. The present model successfully simulates the stress–strain behavior of the physical test by employing the roll resistance and lateral membrane. The case without erosion shows a strain-softening and dilative response, while strain-hardening and contractive response starts to occur as the degree of erosion increases. The dilative to contractive transition is mainly caused by the increase in void ratio due to the loss of fine particles. The change from dilative behavior to contractive behavior is more abrupt for the specimen with larger fine particle percentage because the soil skeleton is mainly controlled by the fine particles instead of by the coarse soil particles. The transition from “fines in sand” to “sand in fines” might be associated with the rapid increasing in the contacts associated with fine particles in the specimen as the percentage of fine content increases. The erosion scenario based on the hydraulic gradient is also modeled by deleting the fine particles based on the ranking of the contact force. Compared with the scenario based on random deletion, the remaining fine particles for the erosion scenario based on the ranking of contact force are more dispersedly distributed, which might benefit the small strain stiffness but result in a smaller strength. This work provides some insights for better understanding the mechanism behind the internal erosion and the associated stress–strain behavior of soil. The gradient of the critical state line increases with more loss of fine particles denoting that the fine particles are helpful for holding the structure of the soils from larger deformation.

  相似文献   

17.
Geotechnical and Geological Engineering - The solidification technology of sludge can effectively solve the problem of environmental pollution and resource shortage. Whereas, the current study...  相似文献   

18.
Wang  Dong-Wei  Zhu  Cheng  Tang  Chao-Sheng  Li  Sheng-Jie  Cheng  Qing  Pan  Xiao-Hua  Shi  Bin 《Acta Geotechnica》2021,16(9):2759-2773

Deep geological repository is a favorable choice for the long-term disposal of nuclear wastes. Bentonite–sand mixtures have been proposed as the potential engineered barrier materials because of their suitable swelling properties and good ability to seal under hydrated repository conditions. To investigate the effects of sand grain size on the engineering performance of bentonite–sand mixtures, we prepare five types of bentonite–sand mixtures by mixing bentonite with sand of varying particle size ranges (0.075–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 1–2 mm and 2–5 mm, respectively). We carry out sequential oedometer tests under different simulated repository conditions, including constant vertical stress (CVS), constant stiffness (CS) and constant volume (CV) conditions. The microstructural heterogeneity and anisotropy of these soil mixtures are characterized through the quantitative analysis of micro-CT scanning results. Experimental results reveal that both sand grain size and boundary condition significantly influence the swelling of soil mixtures. Under three conditions, the temporal evolutions of swelling stress and strain follow similar trends that they increase faster at the beginning and gradually stabilize afterward. Comparing the ultimate values, swelling strains follow CVS?>?CS?>?CV, while swelling stresses follow CV?>?CS?>?CVS. Under CS boundary conditions, as the stiffness coefficient increases, the swelling pressure increases and the swelling strain decreases. CT results further indicate that mixtures with larger sand inclusions are more structurally heterogeneous and anisotropic, resulting in increased inter-particle friction and collision and a higher energy dissipation during the swelling process. Moreover, the non-uniform distribution of bentonite in local zones would be intensified, which plays an important role in compromising swelling behavior. Therefore, soil samples mixed with larger sand particles present a smaller swelling stress and strain values. This study may guide the choice of engineered barrier materials toward an improved design and assessment of geological repository facilities.

  相似文献   

19.
The effects of rate of strain on strength and deformation characteristics of soil–lime were investigated. Five strain rates (0.1, 0.8, 2.0, 4.0 and 7.0 %/min), five lime contents (0, 3, 6, 9 and 12 %) by dry soil weight and three cell pressures (100, 200 and 340 kN/m2) were carried. Triaxial tests, under unconsolidated condition, were used to study the effect of strain rate on strength and initial modulus of elasticity of soil and soil–lime mixture after two curing periods 7 and 21 days, respectively. A total of 405 triaxial specimens have been tested, where 225 specimens have been tested with first curing period (7 days). The testing program includes nine specimens for each strain rate, and each lime content was carried out, including natural soil with zero lime content. Another set of triaxial tests with a total of 180 specimens for the second curing period (21 days) was prepared at optimum moisture content, and the corresponding maximum dry density was also tested. The effects of strain rate and curing period on each of stress–strain behavior, type of failure, deviator stress at failure, cohesion and angle of internal friction and initial modulus of elasticity were studied thoroughly for the natural soil as well as soil–lime mixtures. For natural soil, the test results showed that the undrained shear strength, the initial modulus of elasticity and the cohesion increase significantly as the strain rate increase, while for soil–lime mixture at different curing periods, the undrained shear strength, initial modulus of elasticity and the cohesion increases to a maximum and then decreases as the strain rate and lime content increase. Also, the same variables and angle of internal friction increase with increasing curing period.  相似文献   

20.
Brezzi  Lorenzo  Gabrieli  Fabio  Cola  Simonetta 《Acta Geotechnica》2020,15(3):695-714
Acta Geotechnica - The collapse test with granular or cohesive materials known as ‘slump test’ is a simple, small-scale experiment. It can be used to study the rheology of soil masses...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号