首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the influence of land use change and irrigation in the California Central Valley is quantified using the Pennsylvania State University/National Center for Atmospheric Research fifth generation Mesoscale Model (MM5) coupled with the Community Land Model version 3 (CLM3). The simulations were forced with modern-day and presettlement land use types at 30-km spatial resolution for the period 1 October 1995 to 30 September 1996. This study shows that land use change has significantly altered the structure of the planetary boundary layer (PBL) that affects near-surface temperature. In contrast, many land-use change studies indicate that albedo and evapotranspiration variations are the key processes influencing climate at local-to-regional scales. Our modeling results show that modern-day daily maximum near-surface air temperature (Tmax) has decreased due to agricultural expansion since presettlement. This decrease is caused by weaker sensible heat flux resulting from the lower surface roughness lengths associated with modern-day crops. The lower roughness lengths in the Central Valley also result in stronger winds that lead to a higher PBL. The higher PBL produces stronger sensible heat flux, causing nighttime warming. In addition to land use change, cropland irrigation has also affected hydroclimate processes within the California Central Valley. We generated a 10-member MM5-CLM3 ensemble simulation, where each ensemble member was forced by a fixed volumetric soil water content (SWC) between 3% and 30%, at 3% intervals, over the irrigated areas during a spring?Csummer growing season, 1 March to 31 August 1996. The results show that irrigation lowers the modern-day cropland surface temperature. Daytime cooling is produced by irrigation-related evaporation enhancement. This increased evaporation also dominates the nighttime surface cooling process. Surface cooling and the resulting weaker sensible heat flux further lower the near-surface air temperature. Thus, irrigation strengthens the daytime near-surface air temperature reduction that is caused by land use change, and a similar temperature change is seen for observations over irrigated cropland. Based on our modeling results, the nighttime near-surface warming induced by land use change is alleviated by low-intensity irrigation (17%?<?SWC?<?19%), but such warming completely reverses to a cooling effect under high-intensity irrigation (SWC?>?19%). The land use changes discussed in this study are commonly observed in many regions of the world, and the physical processes identified here can be used to better understand temperature variations over other areas with similar land cover changes.  相似文献   

2.
In this study, a groundwater exploitation scheme is incorporated into the regional climate model, RegCM4, and the climatic responses to anthropogenic alteration of groundwater are then investigated over the Haihe River Basin in Northern China where groundwater resources are overexploited. The scheme models anthropogenic groundwater exploitation and water consumption, which are further divided into agricultural irrigation, industrial use and domestic use. Four 30-year on-line exploitation simulations and one control test without exploitation are conducted using the developed model with different water demands estimated from relevant socioeconomic data. The results reveal that the groundwater exploitation and water consumption cause increasing wetting and cooling effects on the local land surface and in the lower troposphere, along with a rapidly declining groundwater table in the basin. The cooling and wetting effects also extended outside the basin, especially in the regions downwind of the prevailing westerly wind, where increased precipitation occurs. The changes in the four exploitation simulations positively relate to their different water demands and are highly non-linear. The largest changes in climatic variables usually appear in spring and summer, the time of crop growth. To gain further insights into the direct changes in land-surface variables due to groundwater exploitation regardless of the atmospheric feedbacks, three off-line simulations using the land surface model Community Land Model version 3.5 are also conducted to distinguish these direct changes on the land surface of the basin. The results indicate that the direct changes of land-surface variables respond linearly to water demand if the climatic feedbacks are not considered, while non-linear climatic feedbacks enhance the differences in the on-line exploitation simulations.  相似文献   

3.
Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10–40%), altered maximum snow depth (?5 ± 6 cm), and a shortened snow-season (?14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10–30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50–100% of total soil temperature variations.  相似文献   

4.
Deforestation is expanding and accelerating into the remaining areas of undisturbed forest, and the quality of the remaining forests is declining today. Assessing the climatic impacts of deforestation can help to rectify this alarming situation. In this paper, how historical deforestation may affect global climate through interactive ocean and surface albedo is examined using an Earth system model of intermediate complexity (EMIC). Control and anomaly integrations are performed for 1000 years. In the anomaly case, cropland is significantly expanded since AD 1700. The response of climate in deforested areas is not uniform between the regions. In the background of a global cooling of 0.08 °C occurring with cooler surface air above 0.4 °C across 30° N to 75° N from March to September, the surface albedo increase has a global cooling effect in response to global-scale replacement of forests by cropland, especially over northern mid-high latitudes. The northern mid-latitude (30° N–60° N) suffers a prominent cooling in June, suggesting that this area is most sensitive to cropland expansion through surface albedo. Most regions show a consistent trend between the overall cooling in response to historical deforestation and its resulting cooling due to surface albedo anomaly. Furthermore, the effect of the interactive ocean on shaping the climate response to deforestation is greater than that of prescribed SSTs in most years with a maximum spread of 0.05 °C. This difference is more prominent after year 1800 than that before due to the more marked deforestation. These findings show the importance of the land cover change and the land surface albedo, stressing the necessity to analyze other biogeophysical processes of deforestation using interactive ocean.  相似文献   

5.
中国区域陆地水资源数值模拟分析   总被引:3,自引:1,他引:2  
杜川利  刘晓东 《气象》2009,35(8):49-60
利用NCAR公用陆面模式CLM3(Community Land Model 3)模拟1979-2003年的土壤蒸发量和植被蒸腾量,分析了中国区域水资源(降水减去地面蒸发和植被蒸散)的气候特征及变化特征.全国水资源分布从东到西、从南到北依次递减,这与全国多年降水分布一致,其中长江以南地区是水资源丰富区,西北地区尤其是新疆地区是水资源匮乏区.从水资源线性变化趋势来看,长江以北大部分地区水资源呈减少趋势,特别是四川盆地和东北地区,变干趋势显著,水资源减少速率为10~15mm/10a;长江以南地区年水资源增加,增加中心在两广地区,水资源增加速率达20~30mm/10a.  相似文献   

6.
Using the National Center for Atmospheric Research Community Climate System Model Version 3.5, this paper examines the climatic effects of afforestation in the East China monsoon region with a focus on land–atmosphere interactions and the modulating influence of ocean variability. In response to afforestation, the local surface air temperature significantly decreases in summer and increases in winter. The summer cooling is attributed to enhanced evapotranspiration from increased tree cover. During winter, afforestation induces greater roughness and weaker winds over the adjacent coastal ocean, leading to diminished latent heat flux and increased sea-surface temperature (SST). The enhanced SST supports greater atmospheric water vapor, which is accompanied by anomalous wind, and transported into the East China monsoon region. The increase in atmospheric water vapor favors more cloud cover and precipitation, especially in the eastern afforestation region. Furthermore, the increase in atmospheric water vapor and cloud cover produce a greenhouse effect, raising the wintertime surface air temperature. By comparing simulations in which ocean temperature are either fixed or variable, we demonstrate that a significant hydrologic response in East China to afforestation only occurs if ocean temperatures are allowed to vary and the oceanic source of moisture to the continent is enhanced.  相似文献   

7.
There is mounting evidence that permafrost degradation has occurred over the past century. However, the amount of permafrost lost is uncertain because permafrost is not readily observable over long time periods and large scales. This paper uses JULES, the land surface component of the Hadley Centre global climate model, driven by different realisations of twentieth century meteorology to estimate the pan-arctic changes in near-surface permafrost. Model simulations of permafrost are strongly dependent on the amount of snow both in the driving meteorology and the way it is treated once it reaches the ground. The multi-layer snow scheme recently adopted by JULES significantly improves its estimates of soil temperatures and permafrost extent. Therefore JULES, despite still having a small cold bias in soil temperatures, can now simulate a near-surface permafrost extent which is comparable to that observed. Changes in snow cover have been shown to contribute to changes in permafrost and JULES simulates a significant decrease in late twentieth century pan-Arctic spring snow cover extent. In addition, large-scale modelled changes in the active layer are comparable with those observed over northern Russia. Simulations over the period 1967–2000 show a significant loss of near-surface permafrost—between 0.55 and 0.81 million km2 per decade with this spread caused by differences in the driving meteorology. These runs also show that, for the grid cells where the active layer has increased significantly, the mean increase is ~10 cm per decade. The permafrost degradation discussed here is mainly caused by an increase in the active layer thickness driven by changes in the large scale atmospheric forcing. However, other processes such as thermokarst development and river and coastal erosion may also occur enhancing permafrost loss.  相似文献   

8.
Managing the land surface to increase albedo to offset regional warming has received less attention than managing the land surface to sequester carbon. We test whether increasing agricultural albedo can cool regional climate. We first used the Community Atmosphere Model (CAM 3.0) coupled to the Community Land Model (CLM 3.0) to assess the broad climatic effects of a hypothetical implementation of a strategy in which the albedo of cropland regions is increased using high albedo crops. Simulations indicate that planting brighter crops can decrease summertime maximum daily 2 m air temperature by 0.25°C per 0.01 increase in surface albedo at high latitudes (>30°). However, planting brighter crops at low latitudes (<30°) may have negative repercussions including warming the land surface and decreasing precipitation, because increasing the land surface albedo tends to preferentially decrease latent heat fluxes to the atmosphere, which decreases cloud cover and rainfall. We then test a possible method for increasing crop albedo by measuring the range of albedo within 16 isolines of soybeans that differ only with trichome color, orientation, and density but find that such modifications had only minor impacts on leaf albedo. Increasing agricultural albedo may cool high latitude regional climate, but increasing plant albedo sufficiently to offset potential future warming will require larger changes to plant albedo than are currently available.  相似文献   

9.
This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001–2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model’s treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N–80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role under conditions of future Arctic warming.  相似文献   

10.
Climate at the time of inception of the Laurentide Ice Sheet (LIS) at ~115 kyr BP is simulated with the fully coupled NCAR Community Climate System Model (CCSM3) and compared to a simulated preindustrial climate (circa 1870) in order to better understand land surface and atmospheric responses to orbital and greenhouse cooling at inception. The interaction between obliquity and eccentricity produces maximum decrease in TOA insolation in JJA over the Arctic but increases occur over the tropics in DJF. The land surface response is dominated by widespread summer cooling in the Northern Hemisphere (NH), increases in snowfall, and decreases in melt rates and total precipitation. CCSM3 responds to the climate forcing at 115 kyr BP by producing incipient glaciation in the areas of LIS nucleation. We find that the inception of the LIS could have occurred with atmospheric circulation patterns that differ little from the present. The location of the troughs/ridges, mean flow over the Canadian Arctic and dominant modes of the atmospheric circulation are all very similar to the present. Larger changes in mean sea level pressure occur upstream of the inception region in the North Pacific Ocean and downstream in Western Europe. In the North Pacific region, the 115 kyr BP anomalies weaken both the Pacific high and Aleutian low making NH summers look more like the PREIND winters and vice versa. The occurrence of cold JJA anomalies at 115 kyr BP favors outbreaks of cold air not in the winter as in contemporary climates but during the summer instead and reinforces the cooling from orbital and GHG reductions. Increased poleward eddy transport of heat and moisture characterizes the atmospheric response in addition to reduced total cloud cover in the Arctic.  相似文献   

11.
The timing, length, and thermal intensity of the climatic growing season in China show statistically significant changes over the period of 1955 to 2000. Nationally, the average start of the growing season has shifted 4.6–5.5 days earlier while the average end has moved 1.8–3.7 days later, increasing the length of the growing season by 6.9–8.7 days depending on the base temperature chosen. The thermal intensity of the growing season has increased by 74.9–196.8 growing degree-days, depending on the base temperature selected. The spatial characteristics of the change in the timing and length of the growing season differ from the geographical pattern of change in temperatures over this period; but the spatial characteristics of change in growing degree-days does resemble the pattern for temperatures, with higher rates in northern regions. Nationally, two distinct regimes are evident over time: an initial period where growing season indicators fluctuate near a base period average, and a second period of rapidly increasing growing season length and thermal intensity. Growing degree-days are highly correlated with March-to-November mean air temperatures in all climatic regions of China; the length of the growing season is likewise highly correlated with March-to-November mean air temperatures except in east, southeast and southwest China at base temperature of 0°C and southeast China at base temperature of 5°C. The growing season start date appears to have the greater influence on the length of the growing season. In China, warmer growing seasons are also likely to be longer growing seasons.  相似文献   

12.
The impact of high resolution modern vegetation cover on the West African climate is examined using the International Centre for Theoretical Physics Regional Climate Model implementing the NCAR Community Land Model. Two high resolution 25 km long-term simulations driven by the output from a coarser 50-km resolution simulation are performed for the period 1998–2010. One high resolution simulation uses an earlier and coarser-resolution version of plant functional type distribution and leaf area index, while the other uses a more recent, higher-quality, and finer-resolution version of the data. The results indicate that the new land cover distribution substantially alters the distribution of temperature with warming in Central Nigeria, northern Gulf of Guinea and part of the Sahel due to the replacement of C4 grass with corn; and cooling along the coastlines of the Gulf of Guinea and in Central Africa due to the replacement of C4 grass with tropical broadleaf evergreen trees. Changes in latent heat flux appear to be largely responsible for these temperature changes with a net decrease (increase) in regions of warming (cooling). The improved land cover distribution also results in a wetter monsoon season. The presence of corn tends to favor larger precipitation amounts via more intense events, while the presence of tropical broadleaf evergreen trees tends to favor the occurrence of both more intense and more frequent events. The wetter conditions appear to be sustained via (1) an enhanced soil moisture feedback; and (2) elevated moisture transport due to increased low-level convergence in regions south of 10N where the most substantial land cover differences are present. Overall the changes induced by the improved vegetation cover improve, to some extent, the performance of the high resolution regional climate model in simulating the main West African summer monsoon features.  相似文献   

13.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

14.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

15.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

16.
17.
阿克苏河灌区是中纬度干旱区典型的绿洲灌溉系统,同时也是新疆第二大灌区,了解灌区作物需水量可为灌区种植结构调整、水资源优化配置提供科学依据。本研究基于联合国粮农组织(FAO)的Penman-Monteith蒸散发模型,结合作物系数法估算了阿克苏灌区作物需水量的时空变化及其对气候因子和作物种植结构的敏感性。结果表明,1960—2015年阿克苏灌区多年平均作物需水量为586 mm,且呈显著上升趋势,上升速率为38.43 mm/10 a。随着气候变化和作物种植结构的改变,1990—2015年间作物需水量急剧增加,增加速率高达99.37 mm/10 a。对于不同作物类型,果林的需水量最大,高达829.8 mm,其次是棉花、水稻和玉米,小麦需水量最低。阿克苏灌区的作物需水量对日最高气温和日照时数较为敏感,而对最低气温、风速和水汽压的敏感度较低。当日最高气温升高2℃时,作物需水量增加4%,当日照时数增加10%时,作物需水量将增加3.2%。另外,作物需水量对作物种植结构非常敏感,当果林的种植面积比例增加10%时,作物需水量增加了12.1%。  相似文献   

18.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

19.
Liu  Shu  Liu  Xiaoxuan  Yu  Le  Wang  Yong  Zhang  Guang J.  Gong  Peng  Huang  Wenyu  Wang  Bin  Yang  Mengmiao  Cheng  Yuqi 《Climate Dynamics》2021,56(11):4109-4127

The European Space Agency Climate Change Initiative Land Cover data (ESA CCI-LC, from 1992 to 2015) is introduced to the National Center for Atmospheric Research Community Earth System Model version 1.2.1 (NCAR CESM1.2.1). In comparison with the original land surface data in the Community Land Model version 4 (ORG), the new data features notable land use and land cover change (LULCC) with increased forests over northeastern Asia and Alaska by decreasing shrublands and grasslands. Overestimated bare land cover over the Tibetan Plateau (TP) and the Rocky Mountains in the ORG are corrected with the replacements by grasslands and shrublands respectively in the new data. The model simulation results show that with the introduction of the ESA CCI-LC, the simulated surface albedo, surface net radiation flux, sensible and latent heat fluxes are relatively improved over the regions where significant LULCC exists, such as northeastern Asia, Alaska, the TP, and Australia. Surface air temperature, precipitation, and atmospheric circulation are improved in boreal winter but degraded in summer. The winter warming over northeastern Asia results from increased longwave downwelling flux and adiabatic heating while the notable winter cooling over Alaska is attributed to strong cold advection followed by reduced longwave downwelling flux. LULCC alters precipitation by influencing water vapor content. In winter, LULCC affects atmospheric circulation via modulating baroclinicity while in summer, it influences land-sea thermal contrast, thus affecting the intensity of East Asian summer monsoon. LULCC also alters the simulated dust burden.

  相似文献   

20.
This paper explores changes in climatic variables, including solar radiation, rainfall, fraction of diffuse radiation (FDR) and temperature, during wheat season (October to May) and maize season (June to September) from 1961 to 2003 at four sites in the North China Plain (NCP), and then evaluates the effects of these changes on crop growth processes, productivity and water demand by using the Agricultural Production Systems Simulator. A significant decline in radiation and rainfall was detected during the 43 years, while both temperature and FDR exhibit an increasing trend in both wheat and maize seasons. The average trend of each climatic variable for each crop season from the four sites is that radiation decreased by 13.2 and 6.2 MJ m?2 a?1, precipitation decreased by 0.1 and 1.8 mm a?1, minimum temperature increased by 0.05 and 0.02°C a?1, maximum temperature increased by 0.03 and 0.01°C a?1, FDR increased by 0.21 and 0.38% a?1 during wheat and maize season, respectively. Simulated crop water demand and potential yield was significantly decreased because of the declining trend in solar radiation. On average, crop water demand was decreased by 2.3 mm a?1 for wheat and 1.8 mm a?1 for maize if changes in crop variety were not considered. Simulated potential crop yields under fully irrigated condition declined about 45.3 kg ha?1 a?1 for wheat and 51.4 kg ha?1 a?1 for maize at the northern sites, Beijing and Tianjin. They had no significant changes in the southern sites, Jinan and Zhengzhou. Irrigation, fertilization development and crop variety improvement are main factors to contribute to the increase in actual crop yield for the wheat–maize double cropping system, contrasted to the decline in the potential crop yield. Further research on how the improvement in crop varieties and management practices can counteract the impact of climatic change may provide insight into the future sustainability of wheat–maize double crop rotations in the NCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号