首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We explore the potential to improve understanding of the climate system by directly targeting climate model analyses at specific indicators of climate change impact. Using the temperature suitability of premium winegrape cultivation as a climate impacts indicator, we quantify the inter- and intra-ensemble spread in three climate model ensembles: a physically uniform multi-member ensemble consisting of the RegCM3 high-resolution climate model nested within the NCAR CCSM3 global climate model; the multi-model NARCCAP ensemble consisting of single realizations of multiple high-resolution climate models nested within multiple global climate models; and the multi-model CMIP3 ensemble consisting of realizations of multiple global climate models. We find that the temperature suitability for premium winegrape cultivation is substantially reduced throughout the high-value growing areas of California and the Columbia Valley region (eastern Oregon and Washington) in all three ensembles in response to changes in temperature projected for the mid-twenty first century period. The reductions in temperature suitability are driven primarily by projected increases in mean growing season temperature and occurrence of growing season severe hot days. The intra-ensemble spread in the simulated climate change impact is smaller in the single-model ensemble than in the multi-model ensembles, suggesting that the uncertainty arising from internal climate system variability is smaller than the uncertainty arising from climate model formulation. In addition, the intra-ensemble spread is similar in the NARCCAP nested climate model ensemble and the CMIP3 global climate model ensemble, suggesting that the uncertainty arising from the model formulation of fine-scale climate processes is not smaller than the uncertainty arising from the formulation of large-scale climate processes. Correction of climate model biases substantially reduces both the inter- and intra-ensemble spread in projected climate change impact, particularly for the multi-model ensembles, suggesting that—at least for some systems—the projected impacts of climate change could be more robust than the projected climate change. Extension of this impacts-based analysis to a larger suite of impacts indicators will deepen our understanding of future climate change uncertainty by focusing on the climate phenomena that most directly influence natural and human systems.  相似文献   

2.
Climate model dependence and the replicate Earth paradigm   总被引:1,自引:1,他引:0  
Multi-model ensembles are commonly used in climate prediction to create a set of independent estimates, and so better gauge the likelihood of particular outcomes and better quantify prediction uncertainty. Yet researchers share literature, datasets and model code—to what extent do different simulations constitute independent estimates? What is the relationship between model performance and independence? We show that error correlation provides a natural empirical basis for defining model dependence and derive a weighting strategy that accounts for dependence in experiments where the multi-model mean would otherwise be used. We introduce the “replicate Earth” ensemble interpretation framework, based on theoretically derived statistical relationships between ensembles of perfect models (replicate Earths) and observations. We transform an ensemble of (imperfect) climate projections into an ensemble whose mean and variance have the same statistical relationship to observations as an ensemble of replicate Earths. The approach can be used with multi-model ensembles that have varying numbers of simulations from different models, accounting for model dependence. We use HadCRUT3 data and the CMIP3 models to show that in out of sample tests, the transformed ensemble has an ensemble mean with significantly lower error and much flatter rank frequency histograms than the original ensemble.  相似文献   

3.
Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analysis, which does not allow us to distinguish if the origin of its variability is external noise or comes from chaotic sources. The recently introduced Mean to Variance Logarithmic (MVL) Diagram accounts for the spatial variability, being very sensitive to the spatial localization produced by infinitesimal perturbations of spatiotemporal chaotic systems. By using as a benchmark a simple model subject to noise, we show the distinct information given by Rank Histograms and MVL Diagrams. Hence, the main effects of the external noise can be visualized in a graphic. From the MVL diagram we clearly observe a reduction of the amplitude growth rate and of the spatial localization (chaos suppression), while from the Rank Histogram we observe changes in the reliability of the ensemble. We conclude that in a complex framework including spatiotemporal chaos and noise, both provide a more complete forecasting picture.  相似文献   

4.
In many meteorological and climatological modeling applications, the availability of ensembles of predictions containing very large numbers of members would substantially ease statistical analyses and validations. This study describes and demonstrates an objective approach for generating large ensembles of “additional” realizations from smaller ensembles, where the additional ensemble members share important first-and second-order statistical characteristics and some dynamic relations within the original ensemble. By decomposing the original ensemble members into assuredly independent time-series components (using a form of principal component decomposition) that can then be resampled randomly and recombined, the component-resampling procedure generates additional time series that follow the large and small scale structures in the original ensemble members, without requiring any tuning by the user. The method is demonstrated by applications to operational medium-range weather forecast ensembles from a single NCEP weather model and application to a multi-model, multi-emission-scenarios ensemble of 21st Century climate-change projections.  相似文献   

5.
A number of uncertainties exist in climate simulation because the results of climate models are influenced by factors such as their dynamic framework, physical processes, initial and driving fields, and horizontal and vertical resolution. The uncertainties of the model results may be reduced, and the credibility can be improved by employing multi-model ensembles. In this paper, multi-model ensemble results using 10-year simulations of five regional climate models (RCMs) from December 1988 to November 1998 over Asia are presented and compared. The simulation results are derived from phase II of the Regional Climate Model Inter-comparison Project (RMIP) for Asia. Using the methods of the arithmetic mean, the weighted mean, multivariate linear regression, and singular value decomposition, the ensembles for temperature, precipitation, and sea level pressure are carried out. The results show that the multi-RCM ensembles outperform the single RCMs in many aspects. Among the four ensemble methods used, the multivariate linear regression, based on the minimization of the root mean square errors, significantly improved the ensemble results. With regard to the spatial distribution of the mean climate, the ensemble result for temperature was better than that for precipitation. With an increasing number of models used in the ensembles, the ensemble results were more accurate. Therefore, a multi-model ensemble is an efficient approach to improve the results of regional climate simulations.  相似文献   

6.
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean (BREM) and superensemble (SUP), are compared with the ensemble mean (EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.  相似文献   

7.
We investigate the performance of the newest generation multi-model ensemble (MME) from the Coupled Model Intercomparison Project (CMIP5). We compare the ensemble to the previous generation models (CMIP3) as well as several single model ensembles (SMEs), which are constructed by varying components of single models. These SMEs range from ensembles where parameter uncertainties are sampled (perturbed physics ensembles) through to an ensemble where a number of the physical schemes are switched (multi-physics ensemble). We focus on assessing reliability against present-day climatology with rank histograms, but also investigate the effective degrees of freedom (EDoF) of the fields of variables which makes the statistical test of reliability more rigorous, and consider the distances between the observation and ensemble members. We find that the features of the CMIP5 rank histograms, of general reliability on broad scales, are consistent with those of CMIP3, suggesting a similar level of performance for present-day climatology. The spread of MMEs tends towards being “over-dispersed” rather than “under-dispersed”. In general, the SMEs examined tend towards insufficient dispersion and the rank histogram analysis identifies them as being statistically distinguishable from many of the observations. The EDoFs of the MMEs are generally greater than those of SMEs, suggesting that structural changes lead to a characteristically richer range of model behaviours than is obtained with parametric/physical-scheme-switching ensembles. For distance measures, the observations and models ensemble members are similarly spaced from each other for MMEs, whereas for the SMEs, the observations are generally well outside the ensemble. We suggest that multi-model ensembles should represent an important component of uncertainty analysis.  相似文献   

8.
This paper proposes a method for multi-model ensemble forecasting based on Bayesian model averaging (BMA), aiming to improve the accuracy of tropical cyclone (TC) intensity forecasts, especially forecasts of minimum surface pressure at the cyclone center (Pmin). The multi-model ensemble comprises three operational forecast models: the Global Forecast System (GFS) of NCEP, the Hurricane Weather Research and Forecasting (HWRF) models of NCEP, and the Integrated Forecasting System (IFS) of ECMWF. The mean of a predictive distribution is taken as the BMA forecast. In this investigation, bias correction of the minimum surface pressure was applied at each forecast lead time, and the distribution (or probability density function, PDF) of Pmin was used and transformed. Based on summer season forecasts for three years, we found that the intensity errors in TC forecast from the three models varied significantly. The HWRF had a much smaller intensity error for short lead-time forecasts. To demonstrate the proposed methodology, cross validation was implemented to ensure more efficient use of the sample data and more reliable testing. Comparative analysis shows that BMA for this three-model ensemble, after bias correction and distribution transformation, provided more accurate forecasts than did the best of the ensemble members (HWRF), with a 5%–7% decrease in root-mean-square error on average. BMA also outperformed the multi-model ensemble, and it produced “predictive variance” that represented the forecast uncertainty of the member models. In a word, the BMA method used in the multi-model ensemble forecasting was successful in TC intensity forecasts, and it has the potential to be applied to routine operational forecasting.  相似文献   

9.
基于多模式短期集合预报技术的热带气旋降水预报试验   总被引:2,自引:1,他引:2  
利用中尺度AREM和WRF模式为试验模式,由对降水预报结果影响颇大的积云和边界层参数化方案构成的10个集合预报成员,开展有限区域多模式短期集合预报在热带气旋降水预报中的应用与研究.分别研究了单个模式集合预报和多模式集合预报在热带气旋"天鹅"(0907)降水预报中的应用.试验结果表明:(1) WRF模式集合预报效果整体上...  相似文献   

10.
The performance of several state-of-the-art climate model ensembles, including two multi-model ensembles (MMEs) and four structurally different (perturbed parameter) single model ensembles (SMEs), are investigated for the first time using the rank histogram approach. In this method, the reliability of a model ensemble is evaluated from the point of view of whether the observations can be regarded as being sampled from the ensemble. Our analysis reveals that, in the MMEs, the climate variables we investigated are broadly reliable on the global scale, with a tendency towards overdispersion. On the other hand, in the SMEs, the reliability differs depending on the ensemble and variable field considered. In general, the mean state and historical trend of surface air temperature, and mean state of precipitation are reliable in the SMEs. However, variables such as sea level pressure or top-of-atmosphere clear-sky shortwave radiation do not cover a sufficiently wide range in some. It is not possible to assess whether this is a fundamental feature of SMEs generated with particular model, or a consequence of the algorithm used to select and perturb the values of the parameters. As under-dispersion is a potentially more serious issue when using ensembles to make projections, we recommend the application of rank histograms to assess reliability when designing and running perturbed physics SMEs.  相似文献   

11.
This study illustrates the sensitivity of regional climate change projections to the model physics. A single-model (MM5) multi-physics ensemble of regional climate simulations over the Iberian Peninsula for present (1970–1999) and future (2070–2099 under the A2 scenario) periods is assessed. The ensemble comprises eight members resulting from the combination of two options of parameterization schemes for the planetary boundary layer, cumulus and microphysics. All the considered combinations were previously evaluated by comparing hindcasted simulations to observations, none of them providing clearly outlying climates. Thus, the differences among the various ensemble members (spread) in the future projections could be considered as a matter of uncertainty in the change signals (as similarly assumed in multi-model studies). The results highlight the great dependence of the spread on the synoptic conditions driving the regional model. In particular, the spread generally amplifies under the future scenario leading to a large spread accompanying the mean change signals, as large as the magnitude of the mean projected changes and analogous to the spread obtained in multi-model ensembles. Moreover, the sign of the projected change varies depending on the choice of the model physics in many cases. This, together with the fact that the key mechanisms identified for the simulation of the climatology of a given period (either present or future) and those introducing the largest spread in the projected changes differ significantly, make further claims for efforts to better understand and model the parameterized subgrid processes.  相似文献   

12.
Ensembles of climate model simulations are required for input into probabilistic assessments of the risk of future climate change in which uncertainties are quantified. Here we document and compare aspects of climate model ensembles from the multi-model archive and from perturbed physics ensembles generated using the third version of the Hadley Centre climate model (HadCM3). Model-error characteristics derived from time-averaged two-dimensional fields of observed climate variables indicate that the perturbed physics approach is capable of sampling a relatively wide range of different mean climate states, consistent with simple estimates of observational uncertainty and comparable to the range of mean states sampled by the multi-model ensemble. The perturbed physics approach is also capable of sampling a relatively wide range of climate forcings and climate feedbacks under enhanced levels of greenhouse gases, again comparable with the multi-model ensemble. By examining correlations between global time-averaged measures of model error and global measures of climate change feedback strengths, we conclude that there are no simple emergent relationships between climate model errors and the magnitude of future global temperature change. Algorithms for quantifying uncertainty require the use of complex multivariate metrics for constraining projections.  相似文献   

13.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

14.
2003年江淮汛期多模式短期集合预报方法研究   总被引:5,自引:3,他引:5  
利用AREM、MM5和WRF模式为试验模式,由对短期天气预报结果影响颇大的积云参数化方案和边界层方案构成15个集合预报成员,开展有限区域多模式短期集合预报在我国汛期时段的应用与研究.分别研究了单个模式集合预报和多模式集合预报在2003年汛期(7月)预报中的应用,预报对象主要包括降水、500 hPa位势高度和700 hPa相对湿度.试验结果表明:(1) 由AREM、MM5和WRF模式构成的多模式集合对以上要素的集合预报总体效果比其任一单个模式的集合预报效果好;(2) 对于降水的集合预报,单个模式的集合平均结果对多模式集合预报效果有影响.且对于不同的降水临界值影响不同;当降水临界值较小时,单模式集合平均结果对多模式集合效果影响较小;当降水临界值较大时,影响较大,甚至可以影响多模式集合的集合平均预报成败;(3) 对于降水、500 hPa位势高度和700 hPa相对湿度,其单个模式以及多模式的48 h集合预报对确定性预报的改善度都比24 h的显著.(4) 对于形势预报和相对湿度预报,多模式集合预报效果明显比同期T213模式的预报水平高.  相似文献   

15.
集合模式定量降水预报的统计后处理技术研究综述   总被引:8,自引:0,他引:8  
代刊  朱跃建  毕宝贵 《气象学报》2018,76(4):493-510
集合数值模式预报已在定量降水预报业务中广泛应用,以获得预报不确定性、最可能预报结果以及极端天气预警。由于集合系统的数值模式不完善,且不能提供所有的不确定性信息,常表现出系统性偏差以及欠离散或过离散(如对于多模式集合)。为此,需要发展统计后处理技术,在尽量保持集合预报解析度的条件下,提高预报的技巧和可靠性。近年来,各种集合预报统计后处理技术得到快速发展。针对定量降水预报,依据技术方法的途径和成熟度将后处理研究归纳为3方面进行总结,包括:(1)不基于统计模型的非参数化后处理,包括集合定量降水预报偏差订正、多成员或模式信息集成以及基于空间分析的对流尺度模式后处理;(2)基于概率分布统计模型的参数化后处理,包括集合模式输出统计和贝叶斯模型平均两种方法框架;(3)考虑预报量的时间、空间和多变量间依赖关系或结构的处理方法,包括参数化和经验连接概率法。最后,讨论发展统计后处理技术需要关注的问题,包括考虑不同来源、不同尺度的多模式信息集成;提供高质量、高分辨率的降水分析资料;发展再预报技术扩充训练样本;基于不同的订正目的和应用场景来使用不同的后处理技术;发展面向海量预报数据、捕捉极端降水以及考虑预报量结构的新技术。   相似文献   

16.
We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System—recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827–840, 2013)—we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region.  相似文献   

17.
The use of radiative kernels to diagnose climate feedbacks is a recent development that may be applied to existing climate change simulations. We apply the radiative kernel technique to transient simulations from a multi-thousand member perturbed physics ensemble of coupled atmosphere-ocean general circulation models, comparing distributions of model feedbacks with those taken from the CMIP-3 multi GCM ensemble. Although the range of clear sky longwave feedbacks in the perturbed physics ensemble is similar to that seen in the multi-GCM ensemble, the kernel technique underestimates the net clear-sky feedbacks (or the radiative forcing) in some perturbed models with significantly altered humidity distributions. In addition, the compensating relationship between global mean atmospheric lapse rate feedback and water vapor feedback is found to hold in the perturbed physics ensemble, but large differences in relative humidity distributions in the ensemble prevent the compensation from holding at a regional scale. Both ensembles show a similar range of response of global mean net cloud feedback, but the mean of the perturbed physics ensemble is shifted towards more positive values such that none of the perturbed models exhibit a net negative cloud feedback. The perturbed physics ensemble contains fewer models with strong negative shortwave cloud feedbacks and has stronger compensating positive longwave feedbacks. A principal component analysis used to identify dominant modes of feedback variation reveals that the perturbed physics ensemble produces very different modes of climate response to the multi-model ensemble, suggesting that one may not be used as an analog for the other in estimates of uncertainty in future response. Whereas in the multi-model ensemble, the first order variation in cloud feedbacks shows compensation between longwave and shortwave components, in the perturbed physics ensemble the shortwave feedbacks are uncompensated, possibly explaining the larger range of climate sensitivities observed in the perturbed simulations. Regression analysis suggests that the parameters governing cloud formation, convection strength and ice fall speed are the most significant in altering climate feedbacks. Perturbations of oceanic and sulfur cycle parameters have relatively little effect on the atmospheric feedbacks diagnosed by the kernel technique.  相似文献   

18.
Towards quantifying uncertainty in transient climate change   总被引:2,自引:3,他引:2  
Ensembles of coupled atmosphere–ocean global circulation model simulations are required to make probabilistic predictions of future climate change. “Perturbed physics” ensembles provide a new approach in which modelling uncertainties are sampled systematically by perturbing uncertain parameters. The aim is to provide a basis for probabilistic predictions in which the impact of prior assumptions and observational constraints can be clearly distinguished. Here we report on the first perturbed physics coupled atmosphere–ocean model ensemble in which poorly constrained atmosphere, land and sea-ice component parameters are varied in the third version of the Hadley Centre model (the variation of ocean parameters will be the subject of future study). Flux adjustments are employed, both to reduce regional sea surface temperature (SST) and salinity biases and also to admit the use of combinations of model parameter values which give non-zero values for the global radiation balance. This improves the extent to which the ensemble provides a credible basis for the quantification of uncertainties in climate change, especially at a regional level. However, this particular implementation of flux-adjustments leads to a weakening of the Atlantic overturning circulation, resulting in the development of biases in SST and sea ice in the North Atlantic and Arctic Oceans. Nevertheless, model versions are produced which are of similar quality to the unperturbed and un-flux-adjusted version. The ensemble is used to simulate pre-industrial conditions and a simple scenario of a 1% per year compounded increase in CO2. The range of transient climate response (the 20 year averaged global warming at the time of CO2 doubling) is 1.5–2.6°C, similar to that found in multi-model studies. Measures of global and large scale climate change from the coupled models show simple relationships with associated measures computed from atmosphere-mixed-layer-ocean climate change experiments, suggesting that recent advances in computing the probability density function of climate change under equilibrium conditions using the perturbed physics approach may be extended to the transient case.  相似文献   

19.
基于TIGGE资料的地面气温多模式超级集合预报   总被引:13,自引:3,他引:10       下载免费PDF全文
基于TIGGE资料, 采用均方根误差分别对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和英国气象局4个中心集合预报的地面气温场集合平均结果进行检验评估, 比较各中心地面气温的预报效果。并利用超级集合、多模式集合平均和消除偏差集合平均3种方法对4个中心的地面气温预报进行集成, 同时对预报结果进行分析。结果表明: 2007年夏季日本气象厅与欧洲中期天气预报中心在北半球大部分地区预报效果最好, 各中心在不同地区预报效果不同。超级集合与消除偏差集合平均降低了预报误差, 预报效果优于最好的单个中心预报和多模式集合平均。对于较长的预报时效, 消除偏差集合平均表现出了更好的预报性能。  相似文献   

20.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号