首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 The climate during the Last Glacial Maximum (LGM) has been simulated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) general circulation model (GCM) with both prescribed sea surface temperatures (SSTs) based on the CLIMAP reconstruction and computed SSTs with a simple thermodynamic slab ocean. Consistent with the Paleoclimate Modelling Intercomparison Project (PMIP), the other boundary conditions include the large changes in ice-sheet topography and geography, a lower sea level, a lower concentration of CO2 in the atmosphere, and a slightly different insolation pattern at the top of the atmosphere. The results are analysed in terms of changes in atmospheric circulation. Emphasis is given to the changes in surface temperatures, planetary waves, storm tracks and the associated changes in distribution of precipitation. The model responds in a similar manner to the changes in boundary conditions to previous studies in global mean statistics, but differs in its treatment of regional climates. Results also suggest that both the land ice sheets and sea ice introduce significant changes in planetary waves and transient eddy activity, which in turn affect regional climates. The computed SST simulations predict less sea ice and cooler tropical temperatures than those based on CLIMAP SSTs. It is unclear as to whether this is a model and/or a data problem, but the resulting changes in land temperatures and precipitation can be large. Snow mass budget analysis suggests that there is net ice loss along the southern edges of the Laurentide and Fennoscandian ice sheets and net ice gain over other parts of the two ice sheets. The net accumulation is mainly due to the decrease in ablation in the cold climate rather than to the changes in snowfall. The characteristics of the Greenland ice-sheet mass balance in the LGM simulations is also quite different from those in the present-day (PD) simulations. The ablation in the LGM simulations is negligible while it is a very important process in the ice mass budget in the PD simulations. Received: 10 January 1997 / Accepted: 11 December 1997  相似文献   

2.
Published reconstructions of last glacial maximum (LGM) sea surface temperatures and sea ice extent differ significantly. We here test the sensitivity of simulated North Atlantic climates to two different reconstructions by using these reconstructions as boundary conditions for model experiments. An atmospheric general circulation model has been used to perform two simulations of the (LGM) and a modern-day control simulation. Standard (CLIMAP) reconstructions of sea ice and sea surface temperatures have been used for the first simulation, and a set of new reconstructions in the Nordic Seas/Northern Atlantic have been used for the second experiment. The new reconstruction is based on 158 core samples, and represents ice-free conditions during summer in the Nordic Seas, with accordingly warmer sea surface temperatures and less extensive sea ice during winter as well. The simulated glacial climate is globally 5.7 K colder than modern day, with the largest changes at mid and high latitudes. Due to more intense Hadley circulation, the precipitation at lower latitudes has increased in the simulations of the LGM. Relative to the simulation with the standard CLIMAP reconstructions, reduction of the sea ice in the North Atlantic gives positive local responses in temperature, precipitation and reduction of the sea level pressure. Only very weak signatures of the wintertime Icelandic Low occur when the standard CLIMAP sea surface temperature reconstruction is used as the lower boundary condition in LGM. With reduced sea ice conditions in the Nordic Seas, the Icelandic Low becomes more intense and closer to its present structure. This indicates that thermal forcing is an important factor in determining the strength and position of the Icelandic Low. The Arctic Oscillation is the most dominant large scale variability feature on the Northern Hemisphere in modern day winter climate. In the simulation of the LGM with extensive sea ice this pattern is significantly changed and represents no systematic large scale variability over the North Atlantic. Reduction of the North Atlantic sea ice extent leads to stronger variability in monthly mean sea level pressure in winter. The synoptic variability appears at a lower level in the simulation when standard reconstructions of the sea surface in the LGM are used. A closer inspection of storm tracks in this model experiment shows that that the synoptic lows follow a narrow band along the ice edge during winter. The trajectories of synoptic lows are not constrained to the sea ice edge to the same degree when the sea ice extent is reduced. Seasonally open waters in the Nordic Seas in the new reconstruction apparently act as a moisture source, consistent with the current understanding of the rapid growth of the Fennoscandian and Barents Ice Sheets, during the LGM. The signal from the intensified thermal forcing in the North Atlantic in Boreal winter is carried zonally by upper tropospheric waves, and thus generates non-local responses to the changed sea ice cover.  相似文献   

3.
The origin of Antarctic precipitation: a modelling approach   总被引:3,自引:0,他引:3  
The contribution of different moisture sources to Antarctic precipitation for present‐day and glacial conditions is estimated with the NASA/GISS Atmospheric General Circulation Model. Despite its low horizontal resolution (8°×10°), this model simulates reasonably well the broad features of the observed present‐day hydrological cycle. Simulated present‐day Antarctic precipitation is dominated throughout the year by moisture from a subtropical/midlatitude band (30°S−60°S). The moisture supplied to a given coastal area of Antarctica originates mostly in the adjacent oceanic basin; closer to the pole, other oceanic basins can also contribute significantly. Replacing the present‐day sea surface temperatures (SSTs) and sea ice cover in the GCM with those from the CLIMAP oceanic reconstruction for the last glacial maximum (LGM), greatly increases the simulated latitudinal temperature gradient, with the consequence of slightly enhancing the contribution of low latitude moisture to Antarctic precipitation. It also changes the seasonality of the different contributions and thus their budget, particularly in coastal regions. Because the nature of LGM tropical SSTs is still under debate, we performed an additional LGM simulation in which the tropical SSTs are reduced relative to those of CLIMAP. The resulting decrease in the latitudinal gradient brings the relative contributions to Antarctic precipitation more in line with those of the present‐day simulation.  相似文献   

4.
H. Renssen 《Climate Dynamics》1997,13(7-8):587-599
 Geological evidence points to a global Younger Dryas (YD) climatic oscillation during the last glacial/ present interglacial transition phase. A convincing mechanism to explain this global YD climatic oscillation is not yet available. Nevertheless, a profound understanding of the mechanism behind the YD climate would lead to a better understanding of climate variability. Therefore, the Hamburg atmospheric circulation model was used to perform four numerical experiments on the YD climate. The objective of this study is to improve the understanding of different forcings influencing climate during the last glacial/interglacial transition and to investigate to what extent the model response agrees with global geological evidence of YD climate change. The following boundary conditions were altered: sea surface conditions, ice sheets, insolation and atmospheric CO2 concentration. Sea surface temperatures based on foraminiferal assemblages proved to produce insufficient winter cooling in the N Atlantic Ocean in two experiments. It is proposed that this discrepancy is caused by uncertainties in the reconstruction method of sea surface temperatures. Therefore, a model-derived set of Atlantic surface ocean conditions was prescribed in a subsequent simulation. However, the latter set represented an Atlantic Ocean without a thermohaline circulation, which is not in agreement with evidence from ocean cores. The global response to the boundary conditions was analysed using three variables, namely surface temperature, zonal wind speed and precipitation. The statistical significance of the changes was tested with a two-tailed t-test. Moreover, the significant responses to cooled oceans were compared with geological evidence of a YD oscillation. This comparison revealed a good match in Europe, Greenland, Atlantic Canada and the N Pacific region, explaining the YD oscillation in these regions as a response to cooled N Atlantic and N Pacific Oceans. However, the results leave the YD climate in other regions completely unexplained. This reflects either an insufficient set of boundary conditions or the important role played by feedbacks within the coupled atmosphere-ocean-ice system. These feedbacks are poorly represented in the used atmospheric model, since ice sheets and the ocean surface conditions have to be prescribed. Received: 30 July 1996 / Accepted: 12 February 1997  相似文献   

5.
Freshening of high latitude surface waters can change the large-scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large-scale response establishing an oceanic "teleconnection" with time scales of years to centuries. To study these feedbacks, a coupled atmosphere-ocean-sea ice model consisting of a two dimensional atmospheric energy and moisture balance model (EMBM) coupled to a thermodynamic sea ice model and an ocean general circulation model is utilised. The coupled model reproduces many aspects of the present oceanic circulation. We also investigate the climate impact of changes in fresh water balance during an ice age initiation. In this experiment part of the precipitation over continents is stored within continental ice sheets. During the buildup of ice sheets the oceanic stratification in the North Atlantic is weakened by a reduced continental run-off leading to an enhanced thermohaline circulation. Under these conditions salinity is redistributed such that deep water is more saline than under present conditions. Once the ice sheets built up, we simulate an ice age climate without net fresh water storage on the continents. In this case the coupled model reproduces the shallow and weak overturning cell, an ice edge advance insulating the upper ocean, and many other aspects of the glacial circulation.  相似文献   

6.
A regional climate model, the Weather Research and Forecasting (WRF) Model, is forced with increased atmospheric CO2 and anomalous SSTs and lateral boundary conditions derived from nine coupled atmosphere–ocean general circulation models to produce an ensemble set of nine future climate simulations for northern Africa at the end of the twenty-first century. A well validated control simulation, agreement among ensemble members, and a physical understanding of the future climate change enhance confidence in the predictions. The regional model ensembles produce consistent precipitation projections over much of northern tropical Africa. A moisture budget analysis is used to identify the circulation changes that support future precipitation anomalies. The projected midsummer drought over the Guinean Coast region is related partly to weakened monsoon flow. Since the rainfall maximum demonstrates a southward bias in the control simulation in July–August, this may be indicative of future summer drying over the Sahel. Wetter conditions in late summer over the Sahel are associated with enhanced moisture transport by the West African westerly jet, a strengthening of the jet itself, and moisture transport from the Mediterranean. Severe drought in East Africa during August and September is accompanied by a weakened Indian monsoon and Somali jet. Simulations with projected and idealized SST forcing suggest that overall SST warming in part supports this regional model ensemble agreement, although changes in SST gradients are important over West Africa in spring and fall. Simulations which isolate the role of individual climate forcings suggest that the spatial distribution of the rainfall predictions is controlled by the anomalous SST and lateral boundary conditions, while CO2 forcing within the regional model domain plays an important secondary role and generally produces wetter conditions.  相似文献   

7.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

8.
Changes in lake levels during the last 12000 years in eastern North America show spatially coherent patterns, implying climatic control. Conditions were generally wetter than today during the late glacial, becoming more arid towards 6000 years BP when most lakes were low. Lakes rose after 6000 years BP, reaching modern levels by about 3000 years BP. These palaeohydrological changes broadly agree with simulated changes in moisture balance derived from experiments with the NCAR Community Climate Model (Kutzbach and Guetter 1986) with changing orbital parameters and lower boundary conditions (sea-surface temperature and ice extent). However, the model simulates maximum aridity at 9000 years BP. Data and model show broadly similar spatial patterns, implying that the lake-level changes can be explained by the changing boundary conditions and their effects on atmospheric circulation. At 12000 years BP most lakes were high because of increased precipitation along the jet-stream storm-track south of the ice sheet. By 9000 years BP, with the much reduced ice sheet, many lakes along the eastern seaboard and in the southeast were lower than present because of greater evaporation due to high summer insolation. The warming of the continental interior generated an enhanced monsoon low in the southwest, causing increased southerly flow which helped to maintain higher lakes in the Midwest. Dry conditions spread eastwards across the Midwest between 9000 and 6000 years BP. This effect is not shown by the model, which continues to bring monsoonal precipitation into the Midwest while simulating enhanced westerly flow and drier conditions further to the west. Such displacements of circulation features are unimportant at the continental scale, but could be significant if general circulation models are used for regionalscale predictions of changes in the moisture balance.  相似文献   

9.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

10.
We investigate the causes for a strong high latitude imposed ice (land or sea) influence on the marine Intertropical Convergence Zone (ITCZ) in the Community Climate Model version 3 coupled to a 50-m slab ocean. The marine ITCZ in all the ocean basins shift meridionally away from the hemisphere with an imposed added ice cover, altering the global Hadley circulation with an increased tropical subsidence in the hemisphere with imposed ice and uplift in the other. The effect appears to be independent of the longitudinal position of imposed ice. The anomalous ice induces a rapid cooling and drying of the air and surface over the entire high- and midlatitudes; subsequent progression of cold anomalies occurs in the Pacific and Atlantic northeasterly trade regions, where a wind-evaporation-sea surface temperature (SST) feedback initiates progression of a cold SST ‘front’ towards the ITCZ latitudes. Once the cooler SST reaches the ITCZ latitude, the ITCZ shifts southwards, aided by positive feedbacks associated with the displacement. The ITCZ displacement transports moisture away from the colder and drier hemisphere into the other hemisphere, resulting in a pronounced hemispheric asymmetric response in anomalous specific humidity; we speculate that the atmospheric humidity plays a central role in the hemispheric asymmetric nature of the climate response to high latitude ice cover anomalies. From an energy balance viewpoint, the increased outgoing radiative flux at the latitudes of the imposed ice is compensated by an increased radiative energy flux at the tropical latitudes occupied by the displaced ITCZ, and subsequently transported by the altered Hadley and eddy circulations to the imposed ice latitudes. The situation investigated here may be applicable to past climates like the Last Glacial Maximum where hemispheric asymmetric changes to ice cover occurred. Major caveats to the conclusions drawn include omission of interactive sea ice physics and ocean dynamical feedback and sensitivity to atmospheric physics parameterizations across different models.  相似文献   

11.
孙畅  王子谦  杨崧 《大气科学》2019,43(2):350-360
基于全球降水气候中心(GPCC)和全球降水气候计划(GPCP)的降水数据及ERA-interim再分析资料,分析了1979~2012年冬季青藏高原(简称高原)西侧地区降水的基本特征及影响其年际变率的潜在因子。结果表明高原冬季降水主要发生在其西侧地区且为全区变化一致型,降水所需的水汽主要来自上游地区,从该区域的西边界输入。然而,高原西侧地区冬季降水的年际变率主要由水汽输送的动力过程所决定,表现为高原西侧的西南风异常。此外,高原西侧冬季降水的年际变率与其上游典型的大气内部变率北大西洋涛动和北极涛动相关性不强,而与赤道西印度洋和热带中东太平洋的海温显著相关。热带中东太平洋海温异常通过影响大气环流变化,在印度洋北部激发一个反气旋式的环流异常,使得高原西侧地区出现异常西南风,从而加强了水汽通量输送的动力作用。同时在赤道异常东风的作用下,暖水也向印度洋西部输送堆积。赤道中东太平洋海温的异常可进一步导致西风急流发生南北移动,从而也在一定程度上影响了高原西侧冬季水汽输送以及降水的年际变率。  相似文献   

12.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

13.
On glacial time scales, the waxing and waning of the Eurasian and North American ice sheets depend largely on variations in atmospheric temperature. As global sea level is primarily determined by the volume of these ice sheets, there is a direct (yet complex) relation between global sea level and the northern hemispheric (NH) temperature. This relation is essentially represented by a model of the NH ice sheets. We use a thermomechanical ice-sheet–ice shelf–bedrock model in conjunction with an inverse method to deduce a time series of NH temperature (from 120 kyr BP until present) that is consistent with the observed global sea level record. The advantage of this method is that it provides the annual mean surface air temperature averaged over the NH continents north of 40°N. The results reveal that ice age temperatures were 4–10°C lower than today, which agrees with other temperature reconstructions. However, reconstructed temperatures are comparitively low during the early stages of the glacial, a feature that is consistent with the rapid growth of the ice sheets. The sensitivity of the results for uncertainties in precipitation rate, in observed sea level and in some other model parameters is examined to quantify the error in reconstructed temperature. During the glacial period (120–15 kyr BP), surface air temperatures in the NH (north of 40°N) were 7.2±1.5°C lower than todays (interglacial) temperatures.  相似文献   

14.
A series of experiments was done using an atmospheric general circulation model to simulate climates from full glacial time at 18 ka (thousands of years before the present) to the present at 3000 year intervals, and at 126 ka, the previous interglacial period. A modified Köppen climate classification was developed to aid in the interpretation of the results of the circulation model experiments. The climate classification scheme permits the characterization of eleven distinct seasonal temperature and precipitation regimes. For the modern climate, the modified classification agrees well with a classification of natural vegetation zones, and provides an easily-assimilated depiction of climate changes resulting from the varying boundary conditions in the past. At 18 ka, the time of glacial maximum, 45% of the land surface had climate classifications different from the present. At 126 ka, a time when northern hemisphere summer radiation was much greater than at present owing to changes in the date of perihelion and tilt of the earth's axis, the corresponding difference was 32%. For all experiments -3 to 18 ka and 126 ka - only 30% of the land surface showed no change in climate classification from the present. Core areas showing no change included the Amazon basin, the northern Sahara and Australia.  相似文献   

15.
Modulation of a monsoon under glacial forcing is examined using an atmosphere?Cocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air?Csea?Cland interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21?ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer convection.  相似文献   

16.
The Hamburg atmospheric general circulation model (AGCM) ECHAM‐4 is used to identify the main source regions of precipitation falling on Greenland and Antarctica. Both water isotopes H218O and HDO are explicitly built into the water cycle of the AGCM, and in addition the capability to trace water from different source regions was added to the model. Present and LGM climate simulations show that water from the most important source regions has an isotopic signature similar to the mean isotope values of the total precipitation amount. But water from other source regions (with very different isotopic signatures) contributes an additional, non‐negligible part of the total precipitation amount on both Greenland and Antarctica. Analyses of the temperature‐isotope‐relations for both polar regions reveal a solely bias of the glacial isotope signal on Greenland, which is caused by a strong change in the seasonal deposition of precipitation originating from nearby polar seas and the northern Atlantic. Although the performed simulations under LGM boundary conditions show a decrease of the δ 18O values in precipitation in agreement with ice core measurements, the AGCM fails to reproduce the observed simultaneous decrease of the deuterium excess signal.  相似文献   

17.
Most major features of the interdecadal shift in boreal winter-spring precipitation over the American continents associated with the 1976–1977 transition are reproduced in atmospheric general circulation model (GCM) simulations forced with observed sea surface temperature (SST). The GCM runs forced with global and tropical Pacific SSTs produce similar multidecadal changes in precipitation, indicating the dominant influence of tropical Pacific SST. Companion experiments indicate that the shift in mean conditions in the tropical Pacific is responsible for these changes. The observed and simulated “post- minus pre-1976” difference in Jan–May precipitation is wet over Mexico and the southwest U.S., dry over the Amazon, wet over sub-Amazonian South America, and dry over the southern tip of South America. This pattern is not dramatically different from a typical El Niño-induced response in precipitation. Although the interdecadal (post- minus pre-1976) and interannual (El Niño?La Niña) SST anomalies differ in detail, they produce a common tropics-wide tropospheric warmth that may explain the similarity in the precipitation anomaly patterns for these two time scales. An analysis of local moisture budget shows that, except for Mexico and the southwest U.S. where the interdecadal shift in precipitation is balanced by evaporation, elsewhere over the Americas it is balanced by a shift in low-level moisture convergence. Moreover, the moisture convergence is due mainly to the change in low-level wind divergence that is linked to low-level ascent and descent.  相似文献   

18.
As a first qualitative assessment tool, LOVECLIM has been used to investigate the interactions between insolation, ice sheets and the East Asian Monsoon at the Marine Isotopic Stage 13 (MIS–13) in work by Yin et?al. (Clim Past 4:79–90, 2008, Clim Past 5:229–243, 2009). The results are in need of validation with a more sophisticated model, which is done in this work with the ARPEGE atmospheric general circulation model. As in the Earth system Model of Intermediate Complexity, LOVECLIM, ARPEGE shows that the northern hemispheric high insolation in summer leads to strong MIS–13 monsoon precipitation. Data from the Chinese Loess Plateau indicate that MIS–13 was locally a warm and humid period (Guo et?al. in Clim Past 5:21–31, 2009; Yin and Guo in Chin Sci Bull 51(2):213–220, 2006). This is confirmed by these General Circulation Model (GCM) results, where the MIS–13 climate is found to be hotter and more humid both in the presence and absence of any added ice sheets. LOVECLIM found that the combined effects of the ice sheets and their accompanying SSTs contribute to more precipitation in eastern China, whilst in ARPEGE the impact is significant in northeastern China. Nonetheless the results of ARPEGE confirm the counter-intuitive results of LOVECLIM where ice sheets contribute to enhance monsoon precipitation. This happens through a topography induced wave propagating through Eurasia with an ascending branch over northeastern China. A feature which is also seen in LOVECLIM. The SST forcing in ARPEGE results in a strong zonal temperature gradient between the North Atlantic and east Eurasia, which in turn triggers an atmospheric gravity wave. This wave induces a blocking Okhotskian high, preventing the northwards penetration of the Meiyu monsoon front. The synergism between the ice sheets and SST is found through the factor separation method, yielding an increase in the Meiyu precipitation, though a reduction of the Changma precipitation. The synergism between the ice sheets and SST play a non-negligible role and should be taken into consideration in GCM studies. Preliminary fully coupled AOGCM results presented here further substantiate the finding of stronger MIS–13 monsoons and a reinforcement from ice sheets. This work increases our understanding of the signals found in the paleo-observations and the dynamics of the complex East Asian Summer Monsoon.  相似文献   

19.
 Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs. Received: 9 September 1998 / Accepted: 18 March 1999  相似文献   

20.
 We test the climate effects of changes in the tropical ocean by imposing three different patterns of tropical SSTs in ice age general circulation model simulations that include water source tracers and water isotope tracers. The continental air temperature and hydrological cycle response in these simulations is substantial and should be directly comparable to the paleoclimatic record. With tropical cooling imposed, there is a strong temperature response in mid- to high-latitudes resulting from changes in sea ice and disturbance of the planetary waves; the results suggest that tropical/subtropical ocean cooling leads to significant dynamical and radiative feedbacks that might amplify ice age cycles. The isotopes in precipitation generally follow the temperature response at higher latitudes, but regional δ18O/air temperature scaling factors differ greatly among the experiments. In low-latitudes, continental surface temperatures decrease congruently with the adjacent SSTs in the cooling experiments. Assuming CLIMAP SSTs, 18O/16O ratios in low-latitude precipitation show no change from modern values. However, the experiments with additional cooling of SSTs produce much lower tropical continental δ18O values, and these low values result primarily from an enhanced recycling of continental moisture (as marine evaporation is reduced). The water isotopes are especially sensitive to continental aridity, suggesting that they represent an effective tracer of the extent of tropical cooling and drying. Only one of the tropical cooling simulations produces generalized low-latitude aridity. These results demonstrate that the geographic pattern of cooling is most critical for promoting much drier continents, and they underscore the need for accurate reconstructions of SST gradients in the ice age ocean. Received: 26 July 1999 / Accepted: 10 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号