首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jason-1 and TOPEX/Poseidon (T/P) measured sea-surface heights (SSHs) are compared for five regions during the verification tandem phase. The five regions are of similar latitude and spatial extent and include the Gulf of Mexico, Arabian Sea, Bay of Bengal, and locations in the Pacific and Atlantic Oceans away from land. In all five regions, a bias, defined as Jason SSH—TOPEX-B SSH, exists that is different for ascending and descending tracks. For example, in the Gulf of Mexico the bias for ascending tracks was ?0.13 cm and the bias for descending tracks was 2.19 cm. In the Arabian Sea the bias for ascending tracks was ?2.45 cm and the bias for descending tracks was ?1.31 cm. The bias was found to depend on track orientation and significant wave height (SWH), indicating an error in the sea state bias (SSB) model for one or both altimeters. The bias in all five regions can be significantly reduced by calculating separate corrections for ascending and descending tracks in each region as a function of SWH. The correction is calculated by fitting a second-order polynomial to the bias as a function of SWH separately for ascending and descending tracks. An additional constraint is required to properly apply the correction, and we chose to minimize the sum of the TOPEX-B and Jason-1 root-mean-square (rms) crossover differences to be consistent with present SSB models. Application of this constraint shows that the correction, though consistent within each region, is different for each region and that each satellite contributes to the bias. One potential source that may account for a portion of the difference in bias is the leakage in the wave forms in TOPEX-B due to differing altitude rates for ascending and descending tracks. Global SSB models could be improved by separating the tracks into ascenders and descenders and calculating a separate SSB model for each track.  相似文献   

2.
《Marine Geodesy》2013,36(3-4):305-317
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

3.
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

4.
The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.  相似文献   

5.
中国HY-2卫星雷达高度计有效波高真实性检验   总被引:9,自引:5,他引:4  
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency(Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height(SWH) for more than three years(October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center(NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error(RMSE) and mean bias of HY-2SWH is 0.38 m and(–0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data,the RMSE and the mean bias is 0.36 m and(–0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and(0.00±0.26) m,respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than –0.31 m before April2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.  相似文献   

6.
利用Jason-3卫星在国外4个主要卫星高度计定标场所在海域的测量数据,分析了这些海域的有效波高变化特性。在我国大陆沿岸选取了Jason-3卫星经过的12个海域,分析了它们的有效波高变化特性,给出了在我国大陆沿岸建设卫星测高定标场的选址建议。Bass、Corsica、Gavdos等3个定标场海域的平均有效波高约为1.1 m,说明平均有效波高1.1 m及以下的海域适用于建设定标场。选定的12个沿岸海域中,渤海及黄海海域平均有效波高小于0.8 m,显著小于东海及南海1.3~1.5 m平均有效波高,单独从有效波高的角度渤海及黄海海域更适合于建设卫星高度计定标场。  相似文献   

7.
We present the results of retracking 18 cycles (15 from the Jason-TOPEX collinear period) of Jason-1 data. We used the retracking method of Rodriguez which simultaneously solves for all relevant waveform parameters using a 26 Gaussian model of the altimeter point target response. We find significant differences from the Jason-1 Project retracking in the key parameters of range and significant wave height (SWH) in the second version of the Project SGDRs. The differences from the Jason-1 data have a strong dependence on off-nadir angle and some dependence on SWH. The dependence of range on SWH is what is called sea state bias. The retracking technique also estimates surface skewness. For Jason-1 with its very clean waveforms we make the first direct estimates of the skewness effect on altimeter data. We believe that the differences found here and thus in overall sea surface height are the result of the standard project processing using a single Gaussian approximation to the Point Target Response (PTR) and not solving simultaneously for off nadir angle. We believe that the relatively large sea state bias errors estimated empirically for Jason-1 during the cal/val phase result from sensitivity of quantities, particularly SWH, in project GDRs to off nadir angle. The TOPEX-Jason-1 bias can be determined only when a full retracking of Jason-1 is done for the collinear period.  相似文献   

8.
Retracking of Jason-1 Data   总被引:1,自引:0,他引:1  
We present the results of retracking 18 cycles (15 from the Jason-TOPEX collinear period) of Jason-1 data. We used the retracking method of Rodriguez which simultaneously solves for all relevant waveform parameters using a 26 Gaussian model of the altimeter point target response. We find significant differences from the Jason-1 Project retracking in the key parameters of range and significant wave height (SWH) in the second version of the Project SGDRs. The differences from the Jason-1 data have a strong dependence on off-nadir angle and some dependence on SWH. The dependence of range on SWH is what is called sea state bias. The retracking technique also estimates surface skewness. For Jason-1 with its very clean waveforms we make the first direct estimates of the skewness effect on altimeter data. We believe that the differences found here and thus in overall sea surface height are the result of the standard project processing using a single Gaussian approximation to the Point Target Response (PTR) and not solving simultaneously for off nadir angle. We believe that the relatively large sea state bias errors estimated empirically for Jason-1 during the cal/val phase result from sensitivity of quantities, particularly SWH, in project GDRs to off nadir angle. The TOPEX-Jason-1 bias can be determined only when a full retracking of Jason-1 is done for the collinear period.  相似文献   

9.
HY-2A卫星雷达高度计数据的全球统计评价及质量分析   总被引:6,自引:4,他引:2  
自HY-2A卫星发射以来,针对HY-2A卫星雷达高度计产品的交叉定标、真实性检验及质量评估工作一直在持续开展。本文主要以HY-2A卫星高度计第44周期的IGDR产品数据为例,通过使用全球分布图、二维直方图和每日均值统计的方法完成了与Jason-2IGDR产品的比对验证,同时对主要环境校正参数及地球物理产品的数据质量稳定性进行了分析,结果显示高度计产品数据质量较稳定,此外利用HY-2A卫星升降轨交叉点海面高度差、与Jason-2卫星交叉点海面高度差以及沿轨海平面异常数据分析的方法进行了HY-2A卫星高度计观测系统的性能评估,结果显示,HY-2A卫星海面高度精度约为7.48cm,精度接近Jason-2,能满足海洋应用与科学研究的需要。  相似文献   

10.
Jason-1 Altimeter Ground Processing Look-Up Correction Tables   总被引:1,自引:0,他引:1  
Poseidon-2 is the dual frequency radar altimeter embarked on the CNES/NASA oceanographic satellite Jason-1 that was launched on 7 December 2001. The primary objective of the Jason-1 mission is to continue the high accuracy time series of altimeter measurements that began with TOPEX in 1992. To achieve this goal, it is necessary to improve each component of the ground processing continually. Among these components are the look-up correction tables that are used to correct the estimations (range, significant waveheight, and sigma naught) issued from the retracking algorithms (on-board and ground). Look-up tables were first computed taking into account the prelaunch characteristics of the altimeter. They have to be updated to take into account better all the in-flight characteristics of the altimeter and all the updated ground algorithms that can impact the estimation process. The aim of this article is to describe the radar altimeter simulator of performances that has been used to compute look-up tables, to display the freshly computed look-up tables, and to discuss the consequences of these new corrections on the products provided to the users. The updated look-up correction tables allow improvement of SWH estimation, in particular with respect to TOPEX SWH data. It is also shown that no range dependency on SWH has to be looked for in these tables, and that the on-board TOPEX and Poseidon-2 tracking systems may contain the differences explaining the relative sea state bias between both altimeters.  相似文献   

11.
Poseidon-2 is the dual frequency radar altimeter embarked on the CNES/NASA oceanographic satellite Jason-1 that was launched on 7 December 2001. The primary objective of the Jason-1 mission is to continue the high accuracy time series of altimeter measurements that began with TOPEX in 1992. To achieve this goal, it is necessary to improve each component of the ground processing continually. Among these components are the look-up correction tables that are used to correct the estimations (range, significant waveheight, and sigma naught) issued from the retracking algorithms (on-board and ground). Look-up tables were first computed taking into account the prelaunch characteristics of the altimeter. They have to be updated to take into account better all the in-flight characteristics of the altimeter and all the updated ground algorithms that can impact the estimation process. The aim of this article is to describe the radar altimeter simulator of performances that has been used to compute look-up tables, to display the freshly computed look-up tables, and to discuss the consequences of these new corrections on the products provided to the users. The updated look-up correction tables allow improvement of SWH estimation, in particular with respect to TOPEX SWH data. It is also shown that no range dependency on SWH has to be looked for in these tables, and that the on-board TOPEX and Poseidon-2 tracking systems may contain the differences explaining the relative sea state bias between both altimeters.  相似文献   

12.
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1 Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1 Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.  相似文献   

13.
HY-2A卫星高度计有效波高信息提取业务化算法   总被引:1,自引:0,他引:1  
2011年8月16日我国成功发射了第一颗自主海洋动力环境卫星HY-2A,有效波高是其搭载的雷达高度计可获取的重要海洋动力环境参数之一。本文详细介绍了应用于HY-2A雷达高度计的有效波高信息提取业务化算法,该算法通过迭代最小二乘拟合方法提取有效波高信息。同时,基于HY-2A雷达高度计业务化运行获取的有效波高数据,分别与Jason-2卫星高度计有效波高和NDBC浮标海浪波高数据进行了比对分析。比较结果表明,HY-2A雷达高度计与Jason-2有效波高的标准偏差为-0.26m,RMS为0.58m;HY-2A高度计与NDBC浮标数据间的标准偏差为-0.22m,RMS为0.37m。结果证明了目前应用于HY-2A雷达高度计业务化运行中的有效波高信息提取算法的可行性。  相似文献   

14.
Long-term variations in a sea surface wind speed(WS) and a significant wave height(SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation,and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a(1988–2011) cross-calibrated, multi-platform(CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III(WW3) wave model forced by CCMP wind data. The results show the following.(1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH.(2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May(MAM) and December-January-February(DJF), followed by June-July-August(JJA), and smallest in September-October-November(SON).(3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons.(4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.  相似文献   

15.
16.
张洁  田杰  王兆徽 《海洋预报》2020,37(1):1-10
利用机器学习的方法,对14个周期HY-2A卫星高度计数据:风速、有效波高和海面高度差值进行训练,探究海况偏差和风速、有效波高之间的关系,创建海况偏差核函数非参数模型(NPSSB),并与参数模型中具有代表性的BM3、BM4模型进行对比。研究表明:(1)核函数NPSSB模型能够很好的反映SSB与U、SWH之间的关系,SSB与U呈二次函数关系,SSB与SWH呈反比例函数关系;(2)核函数NPSSB模型对SSB的模拟能力与训练数据集相关,数据量越多,模拟能力越好;(3)核函数NPSSB模型与BM3、BM4模型都存在0^-0.03 m的差值,随着风速和有效波高的增加,差值的绝对值越大。  相似文献   

17.
基于浮标数据的卫星雷达高度计海浪波高数据评价与校正   总被引:1,自引:1,他引:0  
卫星雷达高度计是海浪有效波高(significant wave height,SWH)观测的重要手段之一,本文利用时空匹配方法对T/P、Jason-1、Envisat、Jason-2、Cryosat-2和HY-2A共6颗卫星雷达高度计SWH数据与NDBC(National Data Buoy Center,NDBC)浮标SWH数据进行对比验证,并对雷达高度计SWH数据进行校正。全部卫星雷达高度计SWH数据时间跨度为1992年9月25日到2015年9月1日,对比验证NDBC浮标共53个,包括7个大洋浮标。精度评价发现除T/P外,各卫星雷达高度计SWH的RMSE都在0.4~0.5 m之间,经过校正后,RMSE都有显著下降,下降程度最大为13.82%;对于大洋浮标,评价结果RMSE在0.20~0.28 m之间,结果明显优于全部NDBC浮标的精度评价结果;HY-2A卫星雷达高度计SWH在经过校正后数据质量与国外其他5颗卫星雷达高度计SWH数据质量差异较小。  相似文献   

18.
This paper provides an overview of dust transport pathways and concentrations over the Arabian Sea during 1995. Results indicate that the transport and input of dust to the region is complex, being affected by both temporally and spatially important processes. Highest values of dust were found off the Omani coast and in the entrance to the Gulf of Oman. Dust levels were generally lower in summer than the other seasons, although still relatively high compared to other oceanic regions. The Findlater jet, rather than acting as a source of dust from Africa, appears to block the direct transport of dust to the open Arabian Sea from desert dust source regions in the Middle East and Iran/Pakistan. Dust transport aloft, above the jet, rather than at the surface, may be more important during summer. In an opposite pattern to dust, sea salt levels were exceedingly high during the summer monsoon, presumably due to the sustained strong surface winds. The high sea salt aerosols during the summer months may be impacting on the strong aerosol reflectance and absorbance signals over the Arabian Sea that are detected by satellite each year.  相似文献   

19.
SARAL/AltiKa completed its first year in orbit in March 2014. The 1 Hz GDR-T data of the first 10 cycles of the mission are used to perform a comprehensive quality assessment by means of a global multi-mission crossover analysis. Within this approach, SARAL sea surface heights are compared with data from other current missions, mainly Jason-2 and Cryosat-2, to reveal its accuracy and consistency with the other altimeter systems. Alongside with global mean range bias and instrumental drifts, investigations on geographically correlated errors as well as on the realization of the systems origin are performed. The study proves the high quality and reliability of SARAL. The mission shows only a small range bias of about ?5 cm with respect to Jason-2 and neither significant time-tag bias nor instrumental drifts. With 1.3 cm the scatter of radial errors is in the same order of magnitude as for Cryosat-2 and Jason-1 GM and will probably further improve using an enhanced sea state bias (SSB) model. However, the wet tropospheric corrections from SARAL radiometer still show some systematic effects influencing the range bias as well as geographically correlated error patterns and the z-component of the origin. Improved inflight calibration will be necessary to overcome these effects.  相似文献   

20.
The Jason-1 sea state bias (SSB) is analyzed in depth from the first year of GDR products. Compared to previous missions, this work benefits from two aspects of the empirical determination of the SSB from the altimetric data themselves. First, from a methodological point of view, a nonparametric technique (NP) has been developed and largely tested on TOPEX/Poseidon 1, GFO and Envisat data. The NP estimator has proven to be a useful tool in the SSB estimation, and it is now mature enough to be used for a refined analysis. On the other hand, the SSB can be extracted from three different data sets (crossovers, collinear data, and residuals) with different characteristics. It is then possible to cross calibrate various estimations of the SSB models and to determine the most accurate one. A systematic comparison is made between these different estimates for the Jason-1 altimeter. The collinear and crossover data sets yield very similar estimates despite their difference of spatial and temporal distributions. These SSB models assure consistency with the TOPEX mission when comparing Jason-1 and TOPEX residuals during the tandem phase. Thanks to the present work, the impact of the short wavelengths filtering on the SSB estimation is evidenced. More generally, our understanding of potential errors affecting the sea surface height and their impact onto the SSB estimation is also improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号