共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of Conditional Nonlinear Optimal Perturbation to Targeted Observation Studies of the Atmosphere and Ocean 下载免费PDF全文
This paper reviews progress in the application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean in recent years, with a focus on the E1 Nifio-Southern Oscillation (ENSO), Kuroshio path variations, and blocking events. Through studying the optimal precursor (OPR) and optimally growing initial error (OGE) of the occurrence of the above events, the similarity and localization features of OPR and OGE spatial structures have been found for each event. Ideal hindcasting experiments have shown that, if initial errors are reduced in the areas with the largest amplitude for the OPR and OGE for ENSO and Kuroshio path variations, the forecast skill of the model for these events is significantly improved. Due to the similarity between patterns of the OPR and OGE, additional observations implemented in the same sensitive region would help to not only capture the precursors, but also reduce the initial errors in the predictions, greatly increasing the forecast abilities. The similarity and localization of the spatial structures of the OPR and OGE during the onset of blocking events have also been investigated, but their application to targeted observation requires further study. 相似文献
2.
Application of the Conditional Nonlinear Optimal Perturbation Method to the Predictability Study of the Kuroshio Large Meander 总被引:2,自引:0,他引:2
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations.The results show that the model was able to capture the essential features of these path variations.We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method.Because of their relatively large uncertainties,three model parameters were considered:the interfacial friction coefficient,the wind-stress amplitude,and the lateral friction coefficient.We determined the CNOP-Ps optimized for each of these three parameters independently,and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm.Similarly,the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method.Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days.But the prediction error caused by CNOP-I is greater than that caused by CNOP-P.The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored.Hence,to enhance the forecast skill of the KLM in this model,the initial conditions should first be improved,the model parameters should use the best possible estimates. 相似文献
3.
奇异向量(singular vectors,SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector,FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。 相似文献
4.
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error. 相似文献
5.
A Preliminary Application of the Differential Evolution Algorithm to Calculate the CNOP 总被引:1,自引:0,他引:1 下载免费PDF全文
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable. 相似文献
6.
本文总结了近年来条件非线性最优扰动方法的应用研究的主要进展.主要包括四个方面:(1)将条件非线性最优扰动(CNOP)方法拓展到既考虑初始扰动又考虑模式参数扰动,形成了拓展的CNOP方法.拓展的CNOP方法不仅能够应用于研究分别由初始误差和模式参数误差导致的可预报性问题,而且能够用于探讨初始误差和模式参数误差同时存在的情形;(2)将拓展的CNOP方法分别应用于ENSO和黑潮可预报性研究,考察了初始误差和模式参数误差对其可预报性的影响,揭示了初始误差在导致ENSO和黑潮大弯曲路径预报不确定性中的重要作用;(3)考察了阻塞事件发生的最优前期征兆(OPR)以及导致其预报不确定性的最优增长初始误差(OGR),揭示了OPR和OGR空间模态及其演变机制的相似性及其局地性特征;(4)研究了台风预报的目标观测问题,用CNOP方法确定了台风预报的目标观测敏感区,通过观测系统模拟试验(OSSEs)和/或观测系统试验(OSEs),表明了CNOP敏感区在改进台风预报中的有效性.具体地,台风OGR的主要误差分布在某一特定区域,空间分布具有明显的局地性特征,在台风OGR的局地性区域增加观测,有效改进了台风的预报技巧,该区域代表了台风预报的初值敏感区.事实上,上述El Ni(n)o事件、黑潮路径变异以及阻塞事件的OGR的空间分布也具有明显的局地性特征,这些事件的OGR刻画的局地性区域可能也代表了初值敏感区. 相似文献
7.
Due to uncertainties in initial conditions and parameters,the stability and uncertainty of grassland ecosystem simulations using ecosystem models are issues of concern.Our objective is to determine the types and patterns of initial and parameter perturbations that yield the greatest instability and uncertainty in simulated grassland ecosystems using theoretical models.We used a nonlinear optimization approach,i.e.,a conditional nonlinear optimal perturbation related to initial and parameter perturbations (CNOP) approach,in our work.Numerical results indicated that the CNOP showed a special and nonlinear optimal pattern when the initial state variables and multiple parameters were considered simultaneously.A visibly different complex optimal pattern characterizing the CNOPs was obtained by choosing different combinations of initial state variables and multiple parameters in different physical processes.We propose that the grassland modeled ecosystem caused by the CNOP-type perturbation is unstable and exhibits two aspects:abrupt change and the time needed for the abrupt change from a grassland equilibrium state to a desert equilibrium state when the initial state variables and multiple parameters are considered simultaneously.We compared these findings with results affected by the CNOPs obtained by considering only uncertainties in initial state variables and in a single parameter.The numerical results imply that the nonlinear optimal pattern of initial perturbations and parameter perturbations,especially for more parameters or when special parameters are involved,plays a key role in determining stabilities and uncertainties associated with a simulated or predicted grassland ecosystem. 相似文献
8.
Three-Dimensional Structure of Optimal Nonlinear Excitation for Decadal Variability of the Thermohaline Circulation 下载免费PDF全文
The decadal variability of the North Atlantic thermohaline circulation(THC) is investigated within a three-dimensional ocean circulation model using the conditional nonlinear optimal perturbation method. The results show that the optimal initial perturbations of temperature and salinity exciting the strongest decadal THC variations have similar structures: the perturbations are mainly in the northwestern basin at a depth ranging from 1500 to 3000 m. These temperature and salinity perturbations act as the optimal precursors for future modifications of the THC, highlighting the importance of observations in the northwestern basin to monitor the variations of temperature and salinity at depth. The decadal THC variation in the nonlinear model initialized by the optimal salinity perturbations is much stronger than that caused by the optimal temperature perturbations, indicating that salinity variations might play a relatively important role in exciting the decadal THC variability. Moreover, the decadal THC variations in the tangent linear and nonlinear models show remarkably different characteristics, suggesting the importance of nonlinear processes in the decadal variability of the THC. 相似文献
9.
Impact of Different Guidances on Sensitive Areas of Targeting Observations Based on the CNOP Method 总被引:1,自引:0,他引:1 下载免费PDF全文
The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional prediction model-the Global/Regional Assimilation and PrEdiction System(GRAPES).Through a series of sensitivity experiments,several issues on targeting strategy design are discussed,including the effectivity of different guidances to determine the sensitive area(or targeting area) and the impa... 相似文献
10.
In this study, the initial perturbations that are the easiest to trigger the Kuroshio Extension(KE) transition connecting a basic weak jet state and a strong, fairly stable meandering state, are investigated using a reduced-gravity shallow water ocean model and the CNOP(Conditional Nonlinear Optimal Perturbation) approach. This kind of initial perturbation is called an optimal precursor(OPR). The spatial structures and evolutionary processes of the OPRs are analyzed in detail. The results show that most of the OPRs are in the form of negative sea surface height(SSH) anomalies mainly located in a narrow band region south of the KE jet, in basic agreement with altimetric observations. These negative SSH anomalies reduce the meridional SSH gradient within the KE, thus weakening the strength of the jet. The KE jet then becomes more convoluted, with a high-frequency and large-amplitude variability corresponding to a high eddy kinetic energy level; this gradually strengthens the KE jet through an inverse energy cascade. Eventually, the KE reaches a high-energy state characterized by two well defined and fairly stable anticyclonic meanders. Moreover, sensitivity experiments indicate that the spatial structures of the OPRs are not sensitive to the model parameters and to the optimization times used in the analysis. 相似文献
11.
条件非线性最优扰动方法在适应性观测研究中的初步应用 总被引:12,自引:3,他引:12
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响, 比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。 相似文献
12.
The response of a grassland ecosystem to climate change is discussed within the context of a theoretical model.An optimization approach,a conditional nonlinear optimal perturbation related to parameter(CNOP-P) approach,was employed in this study.The CNOP-P,a perturbation of moisture index in the theoretical model,represents a nonlinear climate perturbation.Two kinds of linear climate perturbations were also used to study the response of the grassland ecosystem to different types of climate changes.The results show that the extent of grassland ecosystem variation caused by the CNOP-P-type climate change is greater than that caused by the two linear types of climate change.In addition,the grassland ecosystem affected by the CNOP-P-type climate change evolved into a desert ecosystem,and the two linear types of climate changes failed within a specific amplitude range when the moisture index recovered to its reference state.Therefore,the grassland ecosystem response to climate change was nonlinear.This study yielded similar results for a desert ecosystem seeded with both living and wilted biomass litter.The quantitative analysis performed in this study also accounted for the role of soil moisture in the root zone and the shading effect of wilted biomass on the grassland ecosystem through nonlinear interactions between soil and vegetation.The results of this study imply that the CNOP-P approach is a potentially effective tool for assessing the impact of nonlinear climate change on grassland ecosystems. 相似文献
13.
The predictability of El Ni?o?Southern Oscillation (ENSO) has been an important area of study for years. Searching for the optimal precursor (OPR) of ENSO occurrence is an effective way to understand its predictability. The CNOP (conditional nonlinear optimal perturbation), one of the most effective ways to depict the predictability of ENSO, is adopted to study the optimal sea surface temperature (SST) precursors (SST-OPRs) of ENSO in the IOCAS ICM (intermediate coupled model developed at the Institute of Oceanology, Chinese Academy of Sciences). To seek the SST-OPRs of ENSO in the ICM, non-ENSO events simulated by the ICM are chosen as the basic state. Then, the gradient-definition-based method (GD method) is employed to solve the CNOP for different initial months of the basic years to obtain the SST-OPRs. The experimental results show that the obtained SST-OPRs present a positive anomaly signal in the western-central equatorial Pacific, and obvious differences exist in the patterns between the different seasonal SST-OPRs along the equatorial western-central Pacific, showing seasonal dependence to some extent. Furthermore, the non-El Ni?o events can eventually evolve into El Ni?o events when the SST-OPRs are superimposed on the corresponding seasons; the peaks of the Ni?o3.4 index occur at the ends of the years, which is consistent with the evolution of the real El Ni?o. These results show that the GD method is an effective way to obtain SST-OPRs for ENSO events in the ICM. Moreover, the OPRs for ENSO depicted using the GD method provide useful information for finding the early signal of ENSO in the ICM. 相似文献
14.
A New Strategy for Solving a Class of Constrained Nonlinear Optimization Problems Related to Weather and Climate Predictability 总被引:2,自引:0,他引:2
There are three common types of predictability problemsin weather and climate, which each involve different constrained nonlinearoptimization problems: the lower bound of maximum predictable time, theupper bound of maximum prediction error, and the lower bound of maximumallowable initial error and parameter error. Highly efficient algorithmshave been developed to solve the second optimization problem. And thisoptimization problem can be used in realistic models for weather and climateto study the upper bound of the maximum prediction error. Although afiltering strategy has been adopted to solve the other two problems, directsolutions are very time-consuming even for a very simple model, whichtherefore limits the applicability of these two predictability problems inrealistic models. In this paper, a new strategy is designed to solve theseproblems, involving the use of the existing highly efficient algorithms forthe second predictability problem in particular. Furthermore, a series ofcomparisons between the older filtering strategy and the new method areperformed. It is demonstrated that the new strategy not only outputs thesame results as the old one, but is also more computationally efficient.This would suggest that it is possible to study the predictability problemsassociated with these two nonlinear optimization problems in realisticforecast models of weather or climate. 相似文献
15.
In this study, the approach of conditional nonlinear optimal perturbation related to initial perturbation (CNOP-I) was employed to investigate the maximum variations in plant amount for three main woody plants (a temperate broadleaved evergreen, a temperate broadleaved summergreen, and a boreal needleleaved evergreen) in China. The investigation was conducted within a certain range of land use intensity using a state-of-the-art Lund-Potsdam-Jena dynamic global vegetation model (LPJ DGVM). CNOP-I represents a class of deforestation and can be considered a type of land use with respect to the initial perturbation. When deforestation denoted by the CNOP-I has the same intensity for all three plants, the variation in plant amount of the boreal needleleaved evergreen in northern China is greater than the variation in plant amount of both the temperate broadleaved evergreen and temperate broadleaved summergreen in southern China. As deforestation intensity increases, the plant amount variation in the three woody plant functional types carbon changes, in a nonlinear fashion. The impact of land use on plant functional types is minor because the interaction between climate condition and land use is not considered in the LPJ model. Finally, the different impacts of deforestation on net primary production of the three plant functional types were analyzed by modeling gross primary production and autotrophic respiration. Our results suggest that the CNOP-I approach is a useful tool for exploring the nonlinear and different responses of terrestrial ecosystems to land use. 相似文献
16.
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs. 相似文献
17.
A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter’s atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter’s atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter’s atmosphere and to compare the stability of motions in Jupiter’s atmosphere and Earth’s atmosphere further. 相似文献
18.
Simulations and predictions using numerical models show considerable uncertainties, and parameter uncertainty is one of the most important sources. It is impractical to improve the simulation and prediction abilities by reducing the uncertainties of all parameters. Therefore, identifying the sensitive parameters or parameter combinations is crucial. This study proposes a novel approach: conditional nonlinear optimal perturbations sensitivity analysis(CNOPSA) method. The CNOPSA method fully consi... 相似文献
19.
On the Application of a Genetic Algorithm to the Predictability Problems Involving "On-Off" Switches 总被引:2,自引:0,他引:2
The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on-off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on-off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on-off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured. 相似文献
20.
天气雷达回波衰减订正算法的研究(Ⅰ): 理论分析 总被引:10,自引:12,他引:10
根据雷达气象方程和k-Z关系,导出了雷达反射率因子积分取样观测资料衰减订正的逐库算法、逐库近似算法及稳定性判据。虽然仍不能解决衰减订正问题中固有的“不稳定”特征,但对提高订正计算效率防止过量订正溢出是有效的。 相似文献