首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Melt and fluid inclusions were investigated in six quartz phenocryst samples from the igneous rocks of the extrusive (ignimbrites and rhyolites) and subvolcanic (granite porphyries) facies of the Lashkerek Depression in the Kurama mining district, Middle Tien Shan. The method of inclusion homogenization was used, and glasses from more than 40 inclusions were analyzed on electron and ion microprobes. The chemical characteristics of these inclusions are typical of silicic magmatic melts. The average composition is the following (wt %): 72.4 SiO2, 0.06 TiO2, 13.3 Al2O3, 0.95 FeO, 0.03 MnO, 0.01 MgO, 0.46 CaO, 3.33 Na2O, 5.16K2O, 0.32 F, and 0.21 Cl. Potassium strongly prevails over sodium in all of the inclusions (K2O/Na2O averages 1.60). The average total of components in melt inclusions from five samples is 95.3 wt %, which indicates a possible average water content in the melt of no less than 3–4 wt %. Water contents of 2.0 wt % and 6.6 wt % were determined in melt inclusions from two samples using an ion microprobe. The analyses of ore elements in the melt inclusions revealed high contents of Sn (up to 970 ppm), Th (19–62 ppm, 47 ppm on average), and U (9–26 ppm, 18 ppm on average), but very low Eu contents (0.01 ppm). Melt inclusions of two different compositions were detected in quartz from a granite porphyry sample: silicate and chloride, the latter being more abundant. In addition to Na and K chlorides, the salt inclusions usually contain one or several anisotropic crystals and an opaque phase. The homogenization temperatures of the salt inclusions are rather high, from 680 to 820°C. In addition to silicate inclusions with homogenization temperatures of 820–850°C, a primary fluid inclusion of aqueous solution with a concentration of 3.7 wt % NaCl eq. and a very high density of 0.93 g/cm3 was found in quartz from the ignimbrite. High fluid pressure values of 6.5–8.3 kbar were calculated for the temperature of quartz formation. These estimates are comparable with values obtained by us previously for other regions of the world: 2.6–4.3 kbar for Italy, 3.7 kbar for Mongolia, 3.3–8.7 kbar for central Slovakia, and 3.3–9.6 kbar for eastern Slovakia. Unusual melt inclusions were investigated in quartz from another ignimbrite sample. In addition to a gas phase and transparent glass, they contain spherical Feoxide globules (81.2 wt % FeO) with high content of SiO2 (9.9 wt %). The globules were dissolved in the silicate melt within a narrow temperature range of 1050–1100°C, and the complete homogenization of the inclusions was observed at temperatures of 1140°C or higher. The combined analysis of the results of the investigation of these inclusions allowed us to conclude that immiscible liquids were formed in the high-temperature silicic magma with the separation of iron oxide-dominated droplets.  相似文献   

2.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

3.
The study of re-homogenized melt inclusions in the same growth planes of quartz of pegmatites genetically linked to the Variscan granite of the Ehrenfriedersdorf complex, Erzgebirge, Germany, by ion microprobe analyses has determined high concentrations of Be, up to 10,000 ppm, in one type of melt inclusion, as well as moderate concentrations in the 100 ppm range in a second type of melt inclusion. Generally, the high Be concentrations are associated with the H2O- and other volatile-rich type-B melt inclusions, and the lower Be concentration levels are connected to H2O-poor type-A melt inclusions. Both inclusion types, representing conjugate melt pairs, are formed by a liquid–liquid immiscibility separation process. This extremely strong and very systematic scattering in Be provides insights into the origin of Be concentration and transport mechanisms in pegmatite-forming melts. In this contribution, we present more than 250 new analytical data and show with ion microprobe and fs-LA-ICPMS studies on quenched glasses, as well as with confocal Raman spectroscopy of daughter minerals in unheated melt inclusions, that the concentrations of Be may achieve such extreme levels during melt–melt immiscibility of H2O-, B-, F-, P-, ± Li-enriched pegmatite-forming magmas. Starting from host granite with about 10 ppm Be, melt inclusions with 10,000 ppm Be correspond to enrichment by a factor of over 1,000. This strong enrichment of Be is the result of processes of fractional crystallization and further enrichment in melt patches of pegmatite bodies due to melt–melt immiscibility at fluid saturation. We also draw additional conclusions regarding the speciation of Be in pegmatite-forming melt systems from investigation of the Be-bearing daughter mineral phases in the most H2O-rich melt inclusions. In the case of evolved volatile and H2O-rich pegmatite systems, B, P, and carbonates are important for the enrichment and formation of stable Be complexes.  相似文献   

4.
In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.  相似文献   

5.
F, Cl, S and P were determined, using electron microprobe, in magmatic inclusions trapped within minerals and glass mesostasis from Wudalianchi volcanic rocks. The initial volcanic magma from Wudalianchi corresponds to the basanitic magma crystallized near the surface ( pressure < 91 Mpa ). The potential H2O content of this magma is in the range 2 — 4 wt. %. The initial composition of volcanic magmas varies regularly from early to late volcanic events. From the Middle Pleistocene to the recent eruptions (1719 – 1721 yr.), the basicity of volcanic magma tends to increase, as reflected by an increase in MgO and CaO contents and by a progressive decrease in SiO2 and K2O contents. Meanwhile. from early (Q2 ) to late (Q3) episodic eruptions of the Middle Pleistocene, the initial concentrations of chlorine in volcanic magmas range from 1430 – 1930 ppm to 1700 ppm and decrease to 700 — 970 ppm for the first episodic eruption during the Holocene (Q 4 1 ). The chlorine concentrations of volcanic magmas of recent eruption (Q 4 2 ) are increased again to 2600 – 2870 ppm. A parallel evolution trend for phosphorus and chlorine concentrations in magmas has been certified: 1500 – 5970 ppm (Q2)→ 3500 – 4210 ppm (Q3)→ 1100– 3500 ppm (Q 4 1 )→ 6800– 7900 ppm (Q 4 2 ). The fluorine contents of volcanic magmas, from early to late volcanic events, show the same trend: 770 – 2470 ppm → 200–700 ppm → 700 – 800 ppm. During the crystallization-evolution of volcanic magmas, fluorine and phosphorus tend to be enriched in residual magmas as a result of crystal-melt differentiation. for example. the fluorine contents reach 5000– 6800 ppm and the phosphorus contents, 2.93wt.% in residual magmas. An appreciable amount of chlorine may be lost from water rich volcanic magmas prior to eruption as a result of degassing. Apparently, water serves as a gas carrier for the chlorine. The chlorine contents of residual magmas may decrease to 100 – 300 ppm. The volcanic magmas from Wudalianchi are poor in sulfur, normally ranging from 200 to 400ppm. On account of the behavior of sulfur in magmas and the strontium and oxygen isotopic analyses ((87Sr /86Sr)i=0.70503– 0.70589; δ18O = + 5.50 – + 6.89 ‰ ), it can be considered that the basanitic magmas in the Wudalianchi volcanic area came from the upper mantle and have not yet been contaminated probably by continental crust materials.  相似文献   

6.
The Losevka pluton of rare-metal albite granite, which was explored as a possible source of columbite-zircon-malacon ore, is composed of quartz, sodic plagioclase, potassium feldspar, annite, protolithionite, lepidomelane, and Li-muscovite. The average chemical composition of this rock is as follows, wt %: 74.14 SiO2, 0.04 TiO2, 14.07 Al2O3, 1.05 Fe2O3, 0.78 FeO, 0.15 MnO, 0.09 MgO, 0.47 CaO, 4.65 Na2O, 4.11 K2O, and 0.03 P2O5. The accessory minerals are zircon, malacon, and cyrtolite (874 ppm); apatite (18 ppm); ilmenite (114 ppm); xenotime and monazite (119 ppm); and Nb-columbite (463 ppm). The black inclusions up to 15 cm in size, which are observed in this granite and called “birthmarks” by local geologists, consist of the same rock-forming minerals as the surrounding granite, but are enriched in MnO, MgO, CaO, TiO2, and F and depleted in SiO2 relative to the light granite. The black granite is also distinguished by much higher Sr and Ba contents and lower La, Rb, Y, Nb, REE, Cs, Ta, Th, and U contents. The black color is caused by enrichment in manganese oxides, manganoilmenite, and Mn-annite. All rock-forming minerals are pervaded by thin veinlets of Mn-oxides. In addition, bastnaesite, Y-and Th-fluorides, zircon, and malacon have been identified. Aggregates of black-colored minerals are not the products of the fractionation of the initial magma or immiscibility effects, because the structure of the albite-potassium feldspar-quartz-mica matrix is the same both in black and light granites. The percolation of a deep-sourced fluid enriched in Mn and F into a granitic melt might be a more probable origin.  相似文献   

7.
The Horní Slavkov–Krásno Sn–W ore district is hosted by strongly altered Variscan topaz–albite granite (Krudum granite body) on the northwestern margin of the Bohemian Massif. We studied the fluid inclusions on greisens, ore pockets, and ore veins from the Hub Stock, an apical expression of the Krudum granite. Fluid inclusions record almost continuously the post-magmatic cooling history of the granite body from ~500 to <50°C. Rarely observed highest-temperature (~500°C) highest-salinity (~30?wt.% NaCl eq.) fluid inclusions are probably the result of secondary boiling of fluids exsolved from the crystallizing magma during pressure release which followed hydraulic brecciation of the gneissic mantle above the granite cupola. The greisenization was related to near-critical low-salinity (0–7?wt.% NaCl eq.) aqueous fluids with low amount of CO2, CH4, and N2 (≤10?mol% in total) at temperatures of ~350–400°C and pressures of 300–530 bar. Crush-leach data display highly variable and negatively correlated I/Cl and Br/Cl values which are incompatible with both orthomagmatic and/or metamorphic origin of the fluid phase, but can be explained by infiltration of surficial and/or sedimentary fluids. Low fluid salinity indicates a substantial portion of meteoric waters in the fluid mixture that is in accordance with previous stable isotope data. The post-greisenization fluid activity associated with vein formation and argillitization is characterized by decreasing temperature (<350 to <50°C), decreasing pressure (down to ~50–100 bar), and mostly also decreasing salinity.  相似文献   

8.
The Neoproterozoic granite of Gabal Abu Diab, central Eastern Desert of Egypt, comprises mainly garnet-bearing granite and alkali feldspar granite intruded into calc-alkaline granodiorite–tonalite and metagabbro–diorite complexes. The garnet-bearing granite is composed mainly of plagioclase, K-feldspar, quartz, garnet and primary muscovite ± biotite. The presence of garnet and primary muscovite of Abu-Diab granite suggests its highly fractionated character. Geochemically, the garnet-bearing granite is highly fractionated as indicated from the high contents of SiO2 (74.85–77.5%), alkalis (8.27 to 9.2%, Na2O+K2O) and the trace elements association: Ga, Zn, Zr, Nb and Y. This granite is depleted in CaO, MgO, P2O5, Sr and Ba. The alumina saturation (Shand Index, molar ratio A/CNK) of 1.0 to 1.1 indicates the weak peraluminous nature of this garnet-bearing granite. The geochemical characteristics of the Abu Diab garnet-bearing granite are consistent with either the average I-type or A-type granite and also suggest post-orogenic or anorogenic setting. A fluid inclusions study reveals the presence of three fluid generations trapped into the studied granite. The earlier is a complex CO2–H2O fluid trapped in primary fluid inclusions with CO2 contents >?60 vol.%. These inclusions were probably trapped at minimum temperature >?400°C and minimum pressure >?2 kb. The second is immiscible water–CO2 fluid trapped in secondary and/or pseudo-secondary inclusions. The trapping conditions were estimated at temperature between 400°C and 170°C and pressure between 900 and 2000 bar. The latest fluid is low-salinity aqueous fluid trapped in secondary two-phase and mono-phase inclusions. The trapping conditions were estimated at temperature between 90°C and 160°C and pressure <?900 bar. The origin of the early fluid generation is magmatic fluid while the second and third fluids are of hydrothermal and meteoric origin, respectively.  相似文献   

9.
冈底斯带西段那木如岩体始新世岩浆作用及构造意义   总被引:4,自引:4,他引:4  
冈底斯带西段狮泉河南部那木如岩体岩性变化较大,其中产出大量基性岩透镜体及暗色微细粒包体,空间上与花岗岩类呈渐变过渡接触关系。本文在详细野外调研的基础上,对狮泉河-札达一带那木如花岗岩及其中基性岩石进行了系统的岩石学、地球化学和同位素年代学研究。结果表明,那木如岩体主体岩性为黑云母花岗岩,其SiO2为65%~76%,全碱含量较高,花岗岩中K2O+Na2O=5.50%~8.71%,基性岩石中则4.42%~6.7%。花岗岩类稀土元素最高含量为284.8×10-6,最低只有105.4×10-6;而基性岩类最高为120.4×10-6,最低72.48×10-6。两者稀土元素分配曲线均呈右倾平缓样式,花岗岩具有不明显Eu负异常,微量元素显示出花岗岩类和基性岩类具有相似的蛛网分布样式。两者均明显富K而亏损Nb、Ti等不活泼的HFS元素,显示出明显的岩浆混合作用趋势。4件花岗岩和基性岩样品所显示的LA-ICP-MS法锆石U-Pb年龄分别为46.11±0.78Ma、45.47±0.4Ma、46.7±2.9Ma和45.4±1.4Ma,变化在45.4~46.7Ma范围内,表明始新世早期(~46Ma)区域发生了岩浆混合作用。这一时限与冈底斯中、东部岩浆作用时代(40~52Ma)非常一致,表明始新世早期整个冈底斯发生了规模巨大的岩浆事件,暗示着印度-欧亚大陆碰撞作用在东西方向上所表现出的同时性。  相似文献   

10.
There are 10 types of tungsten ore deposits in South China: granite, porphyry, volcanic, pegmatite, skarn, greisen, wolframite-quartz ± microcline veins, stratabound, ferberite-quartz veins and placer. Most are chronologically related to Yenshanian granites. Integrated field, mineralogic, fluid inclusion and geochemical studies were undertaken to determine the characteristics and origin of the ores. Most of the tungsten ore deposits are also spatially related to Yenshanian granites. These granites include several intrusions, isotopically dated at 160–180 m. y. and 70–100 m. y. The concentration of trace elements, especially W Mo, Sn, Ta, Nb, Li, and F are relatively high in the granites. In the granites of South China, the average WO3 is 4.35 ppm, but in Yenshanian granites, which are the youngest of these, the average WO3 is 5.16 ppm. In the youngest of Yenshanian granites, a light mica-albite granite has been identified, whose average WO3 is as high as 242.3 ppm. From this line of evidence, the tungsten ore deposits in South China are considered to be genetically related to Yenshanian granites. Wolframite-sulfide-quartz veins and scheelite skarns provide the bulk of the reserves and production. There are many different kinds of alteration associated with the different tungsten ore deposits, but the principal ones are silicification, greisenization, potash-feldspathization and chloritization. Four types of fluid inclusions were found:
  1. Liquid-rich;
  2. Gas-rich;
  3. Liquid CO2-bearing;
  4. Polyphase with daughter minerals.
Most common are type I inclusions. Type IV fluid inclusions only appeared in the porphyry and skarns. In skarns, type IV inclusions are evidently confined to the early stage, i.e., the simple silicate stage, but in the later scheelite mineralization stage, only types I and III inclusions occurred. Types II and III were found in the wolframite-quartz-sulfide veins, especially at the top of the veins. Homogenization temperature and salinity were determined on the inclusions, and the pressure of formation was estimated from the inclusions. The homogenization temperatures of some of these types of tungsten ore deposits are as follows: porphyry, 386°C; greisen, 244–301°C; granite, 220°C; wolframite-sulfide-quartz veins, 240–310°C; wolframite-microcline-quartz veins, 267–325°C; stratabound, 219°C; and ferberite-quartz veins. 142°C. The salinity of fluid inclusions in the wolframite-sulfide-quartz veins type was only 5–10% equiv. NaCl. The pressures of formation, determined from the tomperature of homogenization, volume and density of phases in H2O-CO2 inclusions, from veins in three different wolframite-sulfide-quartz deposits, were 450, 550, and 750 atm., respectively. Most of the tungsten ore deposits were formed between 220°C and 390°C, with the porphyry highest and the ferberite-quartz veins type lowest. In the wolframite sulfide-quartz veins, four stages can be recognized: oxide-silicate; wolframitequartz-beryl; wolframite-quartz-sulfide; and carbonate. Throughout this sequence, the salinity and temperature decrease, e. g., from 293°C to 129°C. It is concluded that these particular tungsten deposits were formed from a dilute water solution at moderate to high temperatures and at moderate pressures.  相似文献   

11.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   

12.
Granite core samples (n=14) from the Gogi-Kurlagere fault zone in the central part of the Bhima basin were studied in terms of LREE, Y and Zr mobility during uranium mineralization. LREE, Zr and Y along with LILE (Ba, Rb) and P show behavioral differences in the mineralised and the non-mineralised samples. Average ΣLREE in mineralised granite (240 ppm) is higher than in non-mineralised samples (157 ppm). The average Zr and Y in the mineralised granite are 193 ppm and 17 ppm, while the corresponding abundances of these elements in non-mineralised portion are 148 ppm and 11 ppm respectively. Besides enrichment of U, Th, Ba, Pb and Rb and depletion of Sr are observed in mineralized granite in comparison to non-mineralized granite. Hydrothermal alteration has led to the mobility of these elements, which again dependent on the overall geochemical behavior of the migrating fluid. REE and Y in association with uranyl [(UO2)2+] ion were transported as carbonate complexes like [UO2(CO3)3]4- and [REE (CO3)3]3- and were later incorporated into favourable structural loci by precipitating minerals like pitchblende and coffinite.  相似文献   

13.
Intrusions of the Irtysh Complex are spatially restricted to the regional Irtysh Shear Zone (ISZ) and are hosted in blocks of high-grade metamorphic rocks (Kurchum, Predgornenskii, Sogra, and others) in the greenschist matrix of the ISZ. The massifs consist of contrasting rock series from gabbro to plagiogranite and granite at strongly subordinate amounts of diorite and the practical absence of rocks of intermediate composition (tonalite and granodiorite). The complex was produced in the Early Carboniferous, simultaneously with the onset of the origin of the ISZ itself. The granitoids composing the complex affiliate with diverse petrochemical series (from subaluminous plagiogranite of the andesite series to granite of the calc-alkaline series) and contain similar REE and HFSE concentrations [total REE = 103–163 ppm (La/Yb) n = 3.59–5.44, Zr (200–273 ppm), Nb (7.6–10.6 ppm), Hf (6.1–7.6 ppm), and Ta (0.68–1.19 ppm)] but are different in concentrations in LILE [Rb (3–9 and 121–221 ppm), Sr (213–375 and 77–148 ppm), and Ba (67–140 and 240–369 ppm)] and isotopic composition of Nd (ɛNd(T) from +5.3 in the plagiogranite to −1.2 in the granite) and O (δ18O from +9.4 in the plagiogranite to +14.5 in the granite). Data on the geochemistry and isotopic composition of metamorphic rocks of the Kurchum block and numerical geochemical simulations indicate that the granitoids were generated via the melting of a heterogeneous crustal source, which consisted of upper crustal metapelites and metabasites of the oceanic basement of the blocks of high-grade metamorphic rocks. The differences in the chemical and isotopic compositions of the granitoids were predetermined by the mixing of variable proportions of granitoid magmas derived from metapelite and metabasite sources.  相似文献   

14.
The Miao'ershan uranium ore district is one of the most important granite-hosted uranium producers in South China. There are several Triassic granite plutons in the Miao'ershan batholith, but uranium ore deposits mainly occur within the Douzhashan granitic body. Precise zircon U–Pb dating indicated that these Triassic granite plutons were emplaced during 204 to 215 Ma. The Douzhashan U-bearing granite lies in the central part of the Miao'ershan batholith, and has higher U contents (8.0 to 26.1 ppm, average 17.0 ppm) than the nearby Xiangcaoping granite (5.0 to 9.3 ppm, average 7.0 ppm) and the Yangqiaoling granite (6.4 to 18.3 ppm, average 11.5 ppm) in the south part of the batholith. The Douzhashan granite is composed of medium-grained two-mica granite, whereas the Xiangcaoping and Yangqiaoling granites are composed of porphyritic biotite granite. Both the Xiangcaoping and Douzhashan granites have high A/CNK ratios (> 1.10), high (87Sr/86Sr)i ratios (> 0.720) and low εNd(t) values (− 11.3 to − 10.4), suggesting that they belong to strongly peraluminous S-type granites. The Douzhashan granite has low CaO/Na2O ratios, high Rb/Sr and Rb/Ba ratios, indicating a partial melting origin of clay-rich pelitic rocks. In contrast, the Xiangcaoping granite formed from clay-poor psammite-derived melt. The Yangqiaoling granite shows different geochemical characteristics with the Douzhashan and Xiangcaoping granites, indicating a different magma source. The Yangqiaoling granite has higher εNd(t) of − 9.4 to − 8.3 and variable A/CNK values from 0.98 to 1.19, suggesting a mixture source of meta-sedimentary rocks and meta-igneous rocks. Crystallization fractionation is not the main mechanism for U enrichment in the Douzhashan granite. We suggest that U-rich pelitic rock sources may be the key factor to generate peraluminous U-bearing granites in South China. Searching for those granites which are reduced, strongly peraluminous and were derived from U-rich pelitic rocks, is the most effective way for exploring granite-hosted U deposits.  相似文献   

15.
《Precambrian Research》1987,36(2):143-162
The Colston and Straussburg plutons consist of two dissimilar granites belonging to the Proterozoic (1100–1200 Ma) Keimoes Suite along the eastern margin of the Namaqua mobile belt. The intrusives and their enclaves were investigated to establish their genetic relationships. The peraluminous Colston granite exhibits S-type characteristics while the Strausaburg intrusive shows marked similarity with I-type granites. One set of quartz-rich melanocratic inclusions are present in the Colston granite. The corresponding melanocratic enclaves in the Straussburg pluton are comprised of a porphyritic type and a non-porphyritic type, while leucocratic inclusions are also abundant.Field relationships, mineralogical and chemicál compositions as well as REE-patterns, point to a strong genetic relationship between the granites and their enclaves. Genetic models involving fractional crystallization, wall-rock assimilation, two-magma mixing, and minimum melt-restite mobilisation, were considered to explain the nature and origin of the inclusions and the host granites, and the observed REE-characteristics make most of the models unlikely. It is concluded that the quartz-rich melanocratic inclusions in both plutons formed as products of partial batch melting from a common source, possibly a basic or intermediate gneiss or granulite, under relatively high XCO2 conditions. After the intrusion and consolidation of the first melts, water-undersaturated granitic magmas intruded as a secondstage, incorporating the first melt products as melanocratic inclusions. The different crystallization conditions of the melanocratic inclusions and the host granites are highlighted by the difference in chemical composition of the biotites, as for instance illustrated in Ti-Al diagrams. The biotite is accompanied by hornblende in all the rock types with the exception of the Colston granite and the leucocratic inclusions of the Straussburg granite.The leucocratic enclaves in the Straussburg granite are interpreted as depleted restite material which formed at a pressure near 5 kbar, and which was transported to the surface by the granite magma. When the compositions of the granitic rocks are compared with the experimental results for the haplogranitic (Ab-Or-An-Q) system, they prove to be quite near the expected minimum melt compositions for a total pressure of 5 kbar.  相似文献   

16.
The Neoproterozoic pluton of Gabal Gharib granite Eastern Desert of Egypt is intruded in subduction-related calc-alkaline granitic rocks of granodiorite to adamellite composition. A zone of metasomatized granite was developed along the contacts at the expense of the calc-alkaline granite. The granite of Gabal Gharib is hypersolvus, composed mainly of orthoclase-microperthite, quartz, and interstitial arfvedsonite. Fluorite, zircon, ilmenite, allanite, and astrophyllite are the main accessories. Pegmatite pods as well as miarolitic cavities (mineral-lined cavities) are common and ranging in size from a few millimeters to 50?cm. Rare-metal minerals such as columbite, cassiterite, and fluorite have been identified from the miarolitic cavities. Geochemical studies revealed that Gabal Gharib granite is a highly fractionated granite, homogeneous in composition, with high contents of SiO2, and alkalis, high Ga/Al, and Fe/Mg ratios, and low concentrations of Al, Mg, and CaO relative to granodiorite?Cadamellite country rocks. Gabal Gharib granite is metaluminous to peralkaline with ASI (0.94?C1.07). Trace element characteristics of Gabal Gharib granite include abundances of Rb, Nb, Ta, Sn, Th, U, Y, Ga, Zn, rare earth elements (REEs, except Eu), and F, and depletion in Sr, and Ba relative to granodiorite?Cadamellite country rocks. It has the geochemical characteristic of anorogenic A-type granite. The uniform trends of differentiation, normal REE distribution patterns, and low calculated tetrad effects of REE (<0.2) indicate that the effect of post-magmatic subsolidus processes were minimal in the studied granite. Fluid inclusions were studied in quartz crystals from Gabal Gharib granite, quartz pods, and metasomatized granite. The study revealed the presence of high-temperature (480?C550°C), high-salinity (19.45?C39.13?wt.% NaCl eq.) primary inclusions in both metasomatized and rare-metal granites coexisting with melt inclusions and medium-temperature (350?C450°C), medium-salinity (10?C16?wt.% NaCl esq.) aqueous inclusions coexisting hydrocarbon-bearing inclusions. Hydrocarbon is represented by magmatic CH4 in Gabal Gharib granite, while heavier aliphatic compounds may be present in quartz pods. Melt inclusions with temperatures of homogenization >600°C were also reported. Petrographic, geochemical, and fluid inclusion studies constrain that the peralkaline anorogenic granite of Gabal Gharib was derived from highly evolved magma probably originated by fractional crystallization of mantle source.  相似文献   

17.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

18.
A medium tonnage unconformity proximal uranium deposit has been established at Chitrial by the Atomic Minerals Directorate in the Srisailam sub-basin. In this type of deposits, the association of uranium with potassic alteration (illitization) is well-documented. The present study is directed towards understanding such an association in the Chitrial area for which the uranium mineralized borehole core samples were collected and analyzed. It is observed that the average concentrations of K2O, Na2O, Rb, Ba and Sr in the granite of the Chitrial area are 5.35%, 1.78%, 252 ppm, 564 ppm and 52 ppm, respectively, and they show average critical elemental ratios of K/Rb, Ba/Rb and Rb/Sr as 191, 2.37 and 7.13, respectively. The granites show low K/Rb, low Rb/Ba and high Rb/Sr ratios compared to that of the average crust indicating its derivation from crustal source. The samples have higher values of uranium (av. 53 ppm), thorium (av. 66 ppm) and lead (av. 41 ppm). The U/Th ratio in the granite varies from 0.07 to 20.86 with an average of 1.68. They also exhibit high K2O/Na2O ratio typical of post-Archaean granite and very high values suggest the possibility of later potassium enrichment.  相似文献   

19.
张灵敏  刘景波  程南飞  叶凯  郭顺  陈意  毛骞 《岩石学报》2013,29(5):1525-1539
流体的盐度对含羟基变质矿物组合的稳定温压条件和岩石-流体的相互作用有重要影响.流体的盐度可从矿物中氯含量的角度加以研究.磷灰石是一个含氯矿物,作为副矿物广泛分布在各种岩石中,且能在较宽的温压范围内稳定存在.本文选择大别-苏鲁造山带中典型的高压、超高压岩石开展了磷灰石成分的研究,结合前人流体包裹体的研究结果,探讨了榴辉岩相条件下流体盐度和磷灰石中的氯含量之间的关系.榴辉岩和脉体中磷灰石的XClAp/XOHAp比值与已有的流体包裹体盐度呈很好的线性正相关.榴辉岩和脉体中磷灰石的XClAp/XoHAp比值范围为0.00~0.35时,对应的流体包裹体盐度约为0~40% NaCleqv.  相似文献   

20.
The Palaeo-Proterozoic Ghingee granite is an anatectic granite formed in high grade granulite terrain by ultrametamorphism. The compositional variations both in major and trace elements observed in this granite (SiO2 : 64.16-73.81; Fe2O3 : 0.12-2.19; FeO : 0.12-2.80; MgO : 0.10-2.19; CaO : 1.66-4.71; K2O : 1.09-5.09; Ba: 223-1883 ppm; Cr : 4-60 ppm) are attributed to a) source rock heterogeneity and b) the tectonic disturbances that might have abruptly ended the anatectic melting process. The granite is compositionally similar to Perur, Closepet and Hyderabad granites and is formed during Archaean-Proterozoic transition by anatectic and crustal remelting processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号