首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ebro Fan System consists of en echelon channel-levee complexes, 50×20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment “drainage” of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits.  相似文献   

2.
The Ebro Fan System consists of en echelon channel-levee complexes, 50×20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment “drainage” of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits. Margin setting represents fan and/or source area  相似文献   

3.
Several shore-parallel marine sand bodies lie on the Louisiana continental shelf. They are Trinity Shoal, Ship Shoal, Outer Shoal, and the St. Bernard Shoals. These shoals mark the submerged positions of ancient shorelines associated with abandoned deltas. Three of these shoals are single elongate deposits. The fourth shoal, the St. Bernard Shoals, consists of a group of discrete sand bodies ranging in size from 44 to 0.05 km2, 25 km southeast of the Chandeleur Islands in 15–18 m of water. The St. Bernard Shoals are stratigraphically above the St. Bernard delta complex, which was active 2,500–1,800 years b.p. Understanding the evolution of the St. Bernard Shoals is necessary to reconstruct the Holocene chronology of the St. Bernard delta complex and the eastern Louisiana continental shelf. For this study, 47 vibracores and 400 km of shallow seismic reflection data collected in 1987 across the Louisiana shelf were analyzed. In June 2008, 384 km of higher-resolution seismic reflection data were acquired across the study area and appended to the preexisting datasets. Vibracores were integrated with seismic profiles to identify facies and their regional distribution. Our results demonstrate that the deltaic package stratigraphically below the St. Bernard Shoals is chronologically younger than the northern distributaries, but derived from the same trunk distributary channel (Bayou la Loutre). The river eventually bypassed the northern distributaries, and began to deposit sediment further onto the continental shelf. After abandonment, the overextended delta lobe was rapidly transgressed, creating a transgressive shoreline that eventually coalesced with earlier shorelines in the region to form the Chandeleur Islands. The St. Bernard Shoals formed by the reworking of the relict distributary deposits exposed on the inner to mid shelf during and subsequent to shoreface ravinement.  相似文献   

4.
舟山马岙峡道的水文泥沙特性和峡道效应   总被引:6,自引:2,他引:6  
根据舟山本岛北部马岙峡道实测水文泥沙资料和沉积物采样分析结果以及对马岙岸段岸滩的现场踏勘结果,分析了马岙峡道的水文泥沙特性及其峡道效应。文章认为,受峡道地形限制,马岙岸段水流呈现显著的往复流特性,潮流流速较强,水体含沙量较低,泥沙淤积较弱,岸滩处于冲淤平衡状态;受峡道内涨落潮流分流和汇流的共同作用,马岙小泥糊礁附近发育水下沙嘴,该沙嘴是以落潮流作用为主形成的浅滩,受涨潮流改造而形成的,并将在涨落潮流作用下逐渐增长,形成连岛沙嘴,使小泥糊礁附近岸线发展成弧形岸线,并达成新的平衡。  相似文献   

5.
6.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

7.
Reflection profiling in a region of anomalous topography and structure in the Bay of Bengal off Burma has revealed the presence of a large submarine slide (olistostrome) at the base of the continental slope off the Bassein River. The slide overlies a thick section of Bengal Deep-Sea Fan turbidites and has a complex internal structure consisting of two primary elements. The lower element is pervasively disturbed and is interpreted as a mudflow generated at the time of the slide which spread over a large area to as much as 35 km beyond the topographic toe. This mudflow poured into a distributary channel on the Bengal Fan and virtually filled it for 145 km along its length. The upper element comprises a series of relatively coherent blocks of stratified sediments (olistoliths) bounded by curved fault planes. The blocks have been transported as much as 55 km from the original Sunda Trench wall. Their dimensions, up to 360 m thick and 2.8 km between faults, are similar to olistoliths of the slide terrain in the Apennines. The blocks are blanketed by younger slope strata. The total area covered by the slide, including the mudflow, is almost 4,000 km2, and total volume of the slide is over 900 km3. Material of the slide consists of Bengal Fan turbidites offscraped above the Sunda Subduction zone and blanketed by rapidly deposited slope sediments from a western Irrawaddy River distributary (the Bassein River) during Late Quaternary glacial low sea level. This rapid loading, probably coupled with a large earthquake, triggered the slide.  相似文献   

8.
An erosional channel and upslope-climbing sediment waves have been observed in Ytre Orkdalsfjorden and the marine fjord branch Gaulosen off the mouth of Gaula River in Trondheimsfjorden, central Norway. The submarine channel (up to 100–150 m wide and 12 m deep) is interpreted as the pathway of hyperpycnal flows and turbidity currents. It can be traced for 20 km on the seafloor from the mouth of Gaula River down to 500 m of water depth. Based on swath bathymetry and seismic data, the sediment waves are shown to have an accumulated thickness of 50–60 m. They are up to 8 m high, have up to 1-km-long crests, and wavelengths of 100–900 m. The sediment waves are attributed to hyperpycnal flows and turbidity currents overflowing the banks of the channel. Many of the sediment waves were instigated by pre-existing topography created by mass movements since early Holocene times.  相似文献   

9.
This study integrates newly acquired stratigraphic data, geologic mapping, and paleocurrent data to constrain the stratigraphic evolution of the oldest channel-lobe complex in the Upper Cretaceous Cerro Toro Formation in the Silla Syncline area of the Magallanes Basin, termed the Pehoe member. The Pehoe member ranges in thickness from 60 m in the north to at least 410 m farther down system and comprises three separate divisions (A, B, and C). A lower conglomerate unit and an upper one, termed Pehoe A and C divisions respectively, represent the fill of major incised submarine channels or channel complexes. These are separated by stratified sandstone of the Pehoe B division, representing a weakly confined lobe complex, either transient or terminal.The integration of new data with observations from previous studies reveal that the three main coarse-grained conglomerate and sandstone members in the Cerro Toro Formation in the Silla Syncline include at least seven distinct submarine channels or channel complexes and two major lobe complexes. The thinning and disappearance of these units along the eastern limb of the syncline reflect confinement of the flows to a narrow trough or mini-basin bounded to the east by a topographic high. This confinement resulted in unidirectional paleocurrents to the south and southeast in all deposits. Changes in depositional geometries are interpreted as reflecting changes in sediment supply and relative confinement. Submarine channels were from 700 m to 3.5 km wide and occupied a fairway that was 4-5 km wide. Flows moving south and southeast in this mini-basin probably crossed the eastern topographic high south of the present exposures and joined those moving southward along the axis of the foreland basin at least 16 km to the east.  相似文献   

10.
作者利用浅地层剖面资料研究了天津近海海域存在的主要海底地质灾害.研究发现:浅层气、埋藏三角洲前缘、水下潮流沙脊、陡坎、沙波等地质灾害发育.浅层气主要分布在研究区北部海域的近岸附近,南部海域远离海岸浅层气逐渐增多;埋藏三角洲前缘分布区北至涧河口,南至南港工业区东部海域;水下沙脊分布于北部海域5 m~7 m水深的近岸带,地...  相似文献   

11.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   

12.
长江口扁担沙动力地貌变化过程研究   总被引:1,自引:0,他引:1  
河口浅滩不仅为人类提供宝贵湿地资源,而且是调控河势演变的重要因素。研究河口浅滩动力地貌演变规律对航道整治、湿地生态开发及岸堤防护等具有重要价值。本文利用最近150多年的长江口历史海图资料、实测水深与水文泥沙数据,分析长江口南支最大的浅滩—扁担沙动力地貌演变格局及其变化机制。结果表明:(1) 1860?2016年期间,扁担沙反复历经淤积?冲刷?淤积,浅滩由最初水下阴滩发育出露而形成纺锤状沙体,随后演变为细长扁担状,沙尾切滩成爪状沙体,下扁担沙则伴随爪状缝隙被不断填充而淤长;(2)自1954年洪水到目前,扁担沙?2 m、?5 m等深线包络的面积与体积整体上均呈现增长态势,其中面积年均增长率分别为0.88 km2/a和0.81 km2/a,体积年均增长率分别为1.3×106 m3/a和5×106 m3/a;扁担沙浅滩在不同时期冲淤变化不同,其中1998年出现大幅度冲刷,平均冲刷厚度达到1.4 m;(3)扁担沙体积变化和长江入海泥沙的增减无直接联系,但与入海径流量的变化密切相关;(4)白茆沙“南强北弱”的河势、南北港分流工程以及东风西沙水库的建立导致扁担沙向北推移。  相似文献   

13.
A high-resolution acoustic survey over a fjord side fan delta revealed distinctive bottom features resulting from slope instability processes. Delta-front chutes occurring on slopes of l3° are partially filled with radiating splays of coarse-grained sediment, apparently transported downslope by coarse-grained debris flows that originated on the subaerial slopes above the fan. Arcuate scarp patterns represent shallow successive, rotational slides, with numcrous small displacements of individual blocks and slabs of sediment. Blocky, ridged depositional areas occur at the base of the fan delta, but there is no evidence of long-distance mass movement farther downfjord.  相似文献   

14.
Seismic data from a 186 km-long refraction profile in the Santa Barbara Channel have been interpreted using several velocity inversion techniques. Data were obtained during two cruises in 1978 and 1979. Seismic arrivals from fifty explosions of between 1 and 300 lbs. of TNT were recorded by two ocean bottom seismometers, four permanent ocean bottom stations (University of Southern California), and much of the United States Geological Survey/California Institute of Technology southern California seismic network. Travel-time inversion gives a V p of 6.3 km sec-1 at 7.2 km depth above 7.2 km sec-1 at 14.4 km depth at the western end of the channel. At the eastern end, solutions suggest three sediment refractors overlying V p of 6.4 km sec-1 at 7.3 km depth, above 7.0 km sec-1 at 11.6 km depth, above mantle arrivals with V p of 8.3 km sec-1 at 21.8 km depth. The velocity structure determined by these methods suggests that the channel has a sedimentary fill of from 4 to 7 km and a layer of mafic plus ultramafic rock 14 to 17 km thick. The greatest thicknesses of sediments are restricted to east of Point Conception. The velocity data also suggest that the Franciscan formation may not be present beneath the channel. Rather, the crust here may represent a thickened portion of the Coast Range ophiolite.  相似文献   

15.
 Side-scan sonar images from the Lower Valencia Fan show that turbidite bedforms (chevrons) and net sediment aggradation vary around a small fault scarp. One or more turbidity currents were affected by the fault, but the exact timing of the fault movement in relation to the chevrons is not known. A scaled laboratory experiment showed that mean flow vector would not be affected by a current flowing over an obstacle of similar height to flow depth ratio.  相似文献   

16.
The drainage pattern in the northeast and central Tufts Abyssal Plain is described in detail. Satellite navigation on the systematic survey has allowed precise location of the major channel systems of the northeast Pacific Ocean. Two hundred channel profiles were collected from the echograms showing the Moresby-Scott, Mukluk, and Horizon Channel Systems trending in either a southwestward or westward direction across this section of the Tufts Plain. The channel profiles illustrate the prominence of the higher and wider right-hand levee (facing downstream). The Moresby-Scott Channel System disperses in the form of several distributaries throughout the area studied, and is probably responsible for much of the sediment deposits. Unlike the Moresby-Scott, the Mukluk extends throughout the survey area as a solitary channel with one minor branch. The Horizon Channel crosses the Sedna Fracture Zone east of the Sedna Seamount and terminates in distributary fashion in the central portion of the Tufts Plain. The Moresby-Scott, Mukluk, and Horizon Channels form one major system which encompasses the entire northeast and central Tufts Abyssal Plain.  相似文献   

17.
A high-resolution acoustic survey over a fjord side fan delta revealed distinctive bottom features resulting from slope instability processes. Delta-front chutes occurring on slopes of l3° are partially filled with radiating splays of coarse-grained sediment, apparently transported downslope by coarse-grained debris flows that originated on the subaerial slopes above the fan. Arcuate scarp patterns represent shallow successive, rotational slides, with numcrous small displacements of individual blocks and slabs of sediment. Blocky, ridged depositional areas occur at the base of the fan delta, but there is no evidence of long-distance mass movement farther downfjord.  相似文献   

18.
《Coastal Engineering》2005,52(2):151-158
A winter storm eroded a small (160,000 m3) beach fill at Torrey Pines State Beach in southern California. The fill, constructed in April 2001, was a 600-m long flat-topped berm, extending from a highway revetment seaward about 80 m, terminating in a 2-m tall, near-vertical scarp. The size distributions of the preexisting and fill beach sand were similar (median ∼0.2 mm). A total of 56 cross-shore transects were surveyed between the revetment and 8 m water depth biweekly along 2.7 km of the beach centered on the fill area. During summer and fall, the incident significant wave heights measured 1 km offshore of the fill usually were below 1 m, the scarp was not overtopped, and the fill did not change greatly. The beach face alongshore of the fill accreted, consistent with the usual seasonal cycle in southern California. During a storm (3 m significant wave height) in late November, erosion began when wave uprushes overtopped the scarp and reached the relatively flat elevated fill, where the overwash flowed alongshore to initially small depressions that channeled the flow seawards. The offshore flow rapidly deepened and widened the channels, which maintained steep vertical faces and eroded by slumping. Thirty hours after the storm began, the shoreward end of the eroded channels had retreated to the highway revetment, leaving uneroded sand peninsulas protruding seawards ∼50 m from the revetment and elevated ∼1.75 m above the surrounding beach. Erosion of the beach adjacent to the fill was much less variable alongshore than within the fill region. During the next few days, the peninsulas eroded almost completely.  相似文献   

19.
In the austral summer of 2007, 20.5 km of high-resolution over-sea-ice seismic reflection data were collected in the Granite Harbor region of southern McMurdo Sound over the Mackay Sea Valley. The goal of the survey was to image thin pelagic sediment deposited in the Mackay Sea Valley after the Last Glacial Maximum. A generator–injector air gun was lowered beneath the sea ice through holes drilled by an auger drill system. The recording system was a 60 channel snow streamer with vertically oriented gimbaled geophones spaced 25 m apart. Unique problems in the over-sea-ice seismic reflection survey—noise from the ice column flexing and timing delays caused by trapped air at previous shot points—were overcome to improve the quality of the seismic data. The Mackay Sea Valley survey produced seismic data with a vertical resolution of 6.3 m. The processed seismic data show pelagic sediment thickness of up to 50 m within the Mackay Sea Valley with some locations showing possible older sediments beneath the pelagic sediment layer.  相似文献   

20.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号