首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Except for protons, the chemical composition of solar cosmic rays is very similar to the abundance of the elements at the photosphere of the Sun. If we consider the relative abundance ratio of protons to -particles (P/) at constant rigidity, this ratio is highly variable from one solar cosmic ray event to another. This ratio observed at the Earth, however, decreases monotonically with time from the onset of solar flares and, furthermore, is dependent on the heliocentric distance of the parent flares from the central meridian of the solar disk. P/'s which have been measured before the onset of SC geomagnetic storms change from 1.5 to 50 or more, being a function of the westward position of the source from the east limb of the Sun. These variations with respect to time and heliocentric distance suggest that the propagation of solar cosmic rays is strongly modulated in the interplanetary space. The major part of the -particles seem to propagate as if they are trapped within the magnetic clouds which produce SC geomagnetic and cosmic ray storms at the earth.The chemical composition and rigidity spectra of solar cosmic rays suggest that solar cosmic rays are mainly accelerated by the Fermi mechanism in solar flares. The observed variation of P/'s is produced mainly through the difference between the propagation characteristics of protons and -particles.NAS-NRC Associate with NASA.  相似文献   

2.
McMath plage region 8818 passed over the visible solar disk on May 17–31, 1967. It was very active from its first appearance on the Eastern limb, several times producing bright optical flares and hard X-ray emission, accompanied by intense type II, type IV and centimeter radio bursts. Nevertheless, no solar particles could be detected near the earth until the evening of May 23, when three bright flares were observed in close succession at 25°–28° E. During the following build-up of the solar particle flux over 36 hours, the galactic cosmic ray flux > 1 GeV decreased gradually by about 5%. The flux of solar particles decreased in two steps on May 25, both accompanied by decreases in the equatorial geomagnetic field. These field depressions are attributed to storm plasma ejected from the parent flare of the May 23 particle event. The propagation of solar particles from May 23 on thus appears to be strongly affected by storm plasma from the parent flare of the May 23 event, without any indications of solar particles being trapped in that plasma.A later particle event early on May 28 was also associated with a bright flare in McMath region 8818, at 33° W. This event displayed a rapid build-up, with electrons arriving first, and an exponential decay. A smooth proton peak, 20 min wide, was detected on May 30 closely associated with an SSC attributed to plasma ejection from the parent flare of the May 28 event.Between the geomagnetic storms beginning on May 25 and May 30 an anomalous daily variation was observed in the cosmic ray flux >1 GeV, the time of maximum falling 7–10 hours earlier than normal. Storm time increases in the flux of galactic cosmic rays were seen on May 26 when the equatorial geomagnetic field was depressed by more than 400 . Low latitude auroras were also observed during that time.On leave from the University of Uppsala, Sweden.  相似文献   

3.
We present the results of an analysis of the east-west asymmetry in the solar flare distribution, observed during the years from 1976 to 1985. We conclude that flare events, all type of H flares, are not uniformly spread in heliolongitude over the solar disc when considering events with heliolongitudes greater than 60°, or even closer to central meridian for certain periods. This lack of homogeneity, however, does not have an influence on the definition of east-west asymmetries. Simple random distribution of flares over the solar disc can not account for the asymmetries found, but they can be explained in terms of the transit of active regions in front of the observer's position. Nonetheless, this is not the case for the distribution of flares equal or more intense than importance 1F observed during 1979.  相似文献   

4.
Solar flares and the cosmic ray intensity   总被引:2,自引:0,他引:2  
C. J. Hatton 《Solar physics》1980,66(1):159-165
The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance 1. This model leads to a radius for the modulation region of 60–70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20.  相似文献   

5.
A study of the properties of the cosmic radiation of energy - 10 MeV generated by solar flares is reported. Data from four Pioneer spacecraft in interplanetary orbits, and separated by 180° in heliocentric longitude are employed. Attention is restricted to the properties evident at times in excess of 1 day after the occurrence of the parent flare. The anisotropic character of the radiation; the gradients in heliocentric longitude; the decay time constants; and the energy spectra of the radiation are all studied in detail.It is found that the equilibrium anisotropy assumes a direction - 45° E of the satellite-Sun line at very late times. It is suggested that the anisotropy at such times is parallel to E × B. This observation confirms that convection is the determining process in the escape of the solar cosmic rays from the solar system. It indicates that a positive radial gradient of solar cosmic radiation density has builtup at orbit of Earth some 4 days after a flare. This results in an effective convective velocity of approximately 1/2 the solar wind velocity. Direct measurements indicate the presence of strong gradients in heliocentric longitude even at very late times ( 4 days). These gradients are essentially invariant with respect to time, e-folding angles of n - 30° have been observed at - 10 MeV. The presence of these gradients has a major effect on the temporal variation of the cosmic ray flux during the decay phase of the flare effect. Thus, the observed decay time constant is either increased or decreased relative to the convective value depending on the position of the observer relative to the centroid of the cosmic ray population injected by the flare. The effect of the gradient becomes more pronounced at lower energies, and may even exceed the convective removal rate. The observed decay time constant, the characteristics of the anisotropy, and the gradient in longitude are shown to be inter-related as demanded by theory. It is shown that the exponent of the cosmic ray spectrum is dependent on the location of the observer relative to the centroid of the cosmic ray population injected by the parent flare. At a given point in the frame of reference of the cosmic ray population, the spectral exponent is invariant with time.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

6.
The solar flares, the speeds of shocks propagated in the solar-terrestrial space and driven by coronal mass ejections (CMEs), the heliographic longitudes and Carrington longitudes of source regions, and the geomagnetic storms, which are accompanied by the super solar proton events with a peak ?ux equal to or exceeding 10 000 pfu, have been studied by using the data of ground-based and space observations. The results show that the heliographic longitudes of source regions of super solar proton events distributed in the range from E30? to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitudinal belts, 130°∼220° and 260°∼320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1 200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤−100 nT), except that one super solar proton event was followed by a geomagnetic storm with the geomagnetic activity index Dst=−96 nT, a little smaller than that of major geomagnetic storms.  相似文献   

7.
A list of nearly 350 flares accompanied by type IV radio bursts by Krüger et al. (1971), which covers a period of 14 yr (1956–1969), was expanded to include all PCA and solar cosmic ray events during this entire period. This list, which includes practically all of the most energetic events during the maxima of two consecutive solar cycles, was used to investigate the latitudinal distribution of the above-mentioned flares, as well as of all PCA events, solar cosmic ray events and plage regions associated with them.Histograms of these occurences show clearly the appearance of two peaks in both solar maxima, which confirm the observations of Gnevyshev (1967). Latitudinal analysis of these histograms shows that in cycle 20 the two peaks are independent and their relative strength varies strongly with latitude. In cycle 19, however, this effect is not clearly evident, possibly because of the extremely high level of activity during this cycle. In both cycles, the second maximum shows the highest concentration of the most energetic events.During 1971–1972 visiting Professor of Astrophysics at the National University of Athens, Athens, Greece.  相似文献   

8.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

9.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
11.
A study has been made of the yearly variation of the cosmic ray intensity for the years 1961–67 inclusive using pressure corrected neutron monitor data from both hemispheres to minimize seasonal meteorological effects. An annual wave is found in the data with an amplitude which varied between 0.2 and 1.0 per cent during the period but which had a sensibly constant phase, the time of maximum being in March. These observations, which are shown to be consistent with the observed heliolatitude distribution of coronal 5303Å emission, indicate the existence of a southerly directed asymmetrical gradient of up to 8 per cent perpendicular to the solar equatorial plane. It is found that the cosmic ray intensity at the Earth is controlled by the solar activity in a narrow band of heliolatitudes ±10° or ±20° centred at the heliolatitude of the Earth. Also, the results indicate that there was a phase lag of 1 ± 1 month between solar activity and the resulting changes in the cosmic ray intensity at the Earth giving a radius for the modulating region of ? 10 A.U. during the period of low solar activity considered.  相似文献   

12.
The cosmic ray 11-year variation for solar cycle 20 is attributed to the modulating effect of solar flare-induced shocks propagating through the interplanetary medium to the boundary of the heliosphere. The relative influence of these disturbances upon the cosmic ray intensity as a function of their travel time from the Sun is determined by a deconvolution of a linear system with the number of solar flares (importance 1) and the observed cosmic ray intensity as the input and output respectively of this system. The impulse response function so determined indicates that the solar flare - induced disturbances significantly modulate cosmic rays out to a distance of 70–90 AU where the modulating effect of the disturbances abruptly ends. This is interpreted as the boundary of the heliosphere.  相似文献   

13.
P. N. Pathak 《Solar physics》1971,20(2):462-473
Using solar wind velocity data obtained by Mariner-2 and IMP-1 spacecrafts, an attempt has been made to study its correlation with 5303 coronal intensity. It is shown that the long-lasting regions of enhanced 5303 intensity in the solar corona are well correlated with recurrent streams of solar wind having high velocity. The time-lag between the central meridian passage (CMP) of the coronal features and the detection of the solar wind streams at the spacecraft is found to be smaller than that implied by a radial solar wind. Significant positive correlations for Mariner-2 data are obtained for coronal intensity at heliolatitudes 5°S–10°N with a time-lag of + 2 days while for IMP-1 data, high positive correlations are obtained for the southern heliolatitudes (10°–25°S) without any time-lag. It should be noted that the average heliographic latitudes for Mariner-2 and IMP-1 were 4°N and 4°S respectively during the periods covered by the present analysis. The implications of the results are discussed.Presented at IUCSTP Symposium on Solar-Terrestrial Physics, Leningrad, May 1970.  相似文献   

14.
Solar wind data from the Ames experiment aboard the Pioneer Venus Orbiter, coincident with a period of unprecedented solar activity that began at the end of May, 1991, within the highly active earlier portion of 1991, are summarized and discussed. Some comparison is made with corresponding data from Earth. Some particularly large, strong shocks and solar ejecta were observed at Venus. The solar longitude of Venus, relative to associated flares, varied over a wide range, for a series of flares that produced X-rays that saturated the GOES X-ray counters. Some of the disturbances at Venus must be due to CMEs with longitudinal extents up to 40–50 deg.  相似文献   

15.
We study the occurrence probability of type III radio bursts during flares as a function of the flare position on the Sun. We find that this probability peaks around 30° east of the central meridian, which points to a reciprocal tilt of the average radiation pattern of type IIIs. We argue that anisotropic scattering of the radiation by overdense coronal fibers parallel to the magnetic field is the dominant factor determining the orientation of radiation patterns. It follows that the average magnetic field appears to be tilted 30° west from the vertical. We also find that within a given active region, the average type III production rate of flares peaks 1° west of the center of gravity of all the flares of this active region.We infer that the coronal magnetic field above active regions presents a strong east-west asymmetry, resulting from the well known asymmetry at the photospheric level. As the west side of an active region covers a smaller area with stronger magnetic field than the east side, western flares are generally closer to open field lines than eastern flares. As a consequence, accelerated particles on the trailing (east) side of active regions usually stay trapped in magnetic loops, while on the leading (west) side they are more likely to escape along open lines into interplanetary space. As a result of the initial westward tilt of these open lines, we estimate that the corresponding Archimedean spiral is on average (apparently) rooted 15° west of the flare.  相似文献   

16.
174 proton flares which were observed during the period from 1956 to 1965, occurred in 81 different active regions. It is shown that these active regions formed in complexes of activity, which stayed on the solar surface for many months, and in some cases even for several years. Since the proton-flare regions develop very rapidly and reach the proton-flare active stage within a few days, these complexes of activity represent the areas on the sun, where proton-flare regions can form at any time. Reference is made to contributions by Bumba and Howard, who investigated the birth of active regions and detected some properties of complexes of activity; nevertheless, at the present time, we do not know any method to predict when a proton-flare region begins to develop in such a complex of activity.On the other hand, there is a chance of predicting the dangerous longitudes on the sun, as soon as such a complex of activity has been well recognized or, from the opposite point of view, to predict the safe proton-flare free periods on the sun. If, however, all the complexes on both the hemispheres are taken into account and every complex is considered proton-dangerous from 2 days before to 7 days after the central meridian passage, one can prove that no proton-flare free periods existed for more than 3 years around the maximum of the last solar cycle. Applying this result to the present cycle, one can conclude that no safe forecasts of proton-flare free periods can be made from the beginning of 1968 to the end of 1970. During the remaining 7 or 8 years of the solar cycle, long-term forecasts of proton flares could be made provided that our knowledge of the formation and development of the complexes of activity is improved.It is of interest to notice some properties of the complexes formed in the last solar cycle. While the complexes on the Northern solar hemisphere remained at fairly constant heliographic longitudes for many years, the complexes formed on the Southern hemisphere seemed to travel in two rows around the sun, in the direction opposite to the solar rotation. Another interesting fact is a yearly periodicity in the formation of proton-flare regions in the complexes of activity, with a maximum in the summer period and a deep minimum in the winter season. Such a seasonal variation also appears, if one considers the flare activity, type-IV bursts, PCA's, great magnetic storms, and magnetic crochets. Therefore, one can reasonably believe that this yearly variation, even when similar to the seasonal variation at the earth, is of solar origin.Invited Lecture given at the COSPAR meeting in London, July 1967.  相似文献   

17.
The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944–1974, has revealed some characteristic asymmetric variations. A north-south asymmetry of the green line intensity is the main feature of the period 1949–1971 while a south-north one is obvious within 1972–1974 and the minor statistical significance span 1944–1948. On the other hand a significant W-E asymmetry has been confirmed in the whole period 1944–1974. It is noteworthy that the period 1949–1971, where the N-S asymmetry takes place consists a 22-yr solar cycle which starts from the epoch of the solar magnetic field inversion of the solar cycle No. 18 and terminates in the relevant epoch of the cycle No. 20.The combination of N-S and S-N asymmetry with a W-E one makes the NW solar-quarter to appear as the most active of all in the 22-yr cycle 1949–1971, while in the periods 1944–1948 and 1972–1974 the SW quarter is the most active. Finally, from the polar distribution of the green line intensity has been derived that the maximum values of the asymmetries occur in heliocentric sectors ± 10°–20° far from the solar equator on both sides of the central meridian.Physical mechanisms which could contribute to the creation of both N-S and E-W asymmetries of the solar activity and the green line intensity as an accompanied event, like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived active solar longitudes formed by temporal clustering of solar active centers, have been discussed.  相似文献   

18.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

19.
Data are presented from the IMP-4 satellite of 0.3–12 MeV electrons from the Sun between May 24, 1967 and May 2, 1969. Correlations with contemporary proton intensity increases at energies above 1 MeV are studied. Classical solar flare events such as those frequently observed from 30°W–60°W in solar longitude are not discussed. Categories of unusual events are defined and examples of each type are given. Discussion of these events centers around the emission and propagation of energetic particles from the point of origin on the Sun to the Earth. The results of this study are the following: (1) The differential electron energy spectrum (0.3–12 keV) from solar flares appears to be a constant of the flare process, with the spectral index = (-)3.0 ± 0.2. (2) Particle emission from solar flares contains a prompt component, which is injected into the interplanetary medium beyond the Sun and which is responsible for the diffusion characteristics of solar particle events, and a delayed component which is effectively contained in the lower solar atmosphere where it diffuses typically ± 100° in longitude and gradually escapes into interplanetary space. The delayed component gives rise to the corotating features commonly observed after the impulsive and diffusive onset from the prompt component. This is not the same as the two component model discussed by Lin (1970a) in which 40 keV electrons are often observed as a separate phenomenon and frequently precede higher energy particles observed at 1 AU. (3) Storage of electrons > 300 keV and protons > 1 MeV is essential to explain emission and propagation characteristics of solar particle events. In some rare cases the storage mechanism appears to be very efficient, culminating in a catastrophic decay of the trapping region. (4) The events with low proton/electron ratios all occur at least three weeks after the previous relativistic electron producing flare.  相似文献   

20.
This study deals with the short-term variations of cosmic ray intensity during the interval 1973–78. Daily means of high latitude neutron and meson monitors from the same station and those of a low latitude neutron monitor have been analysed using the Chree method of superposed epochs. The zero epoch for the Chree analyses corresponds to the day of a substantial increase (V 200 km s–1) in the solar wind speed to values of 550 km s–1 and which persists at such high values for an interval of at least three days. The investigation reveals the existence of two types of cosmic ray intensity variations with distinctly different spectral characteristics. During the interval 1973–76, relative changes in the neutron and meson monitor rates are nearly equal indicating an almost flat rigidity spectrum of variation. During 1977–78, however, the spectrum acquires a negative spectral character similar to that observed for Forbush decreases. We suggest that events of the interval 1973–76 are essentially due to high speed streams associated with solar coronal holes and that events of the interval 1977–78 are due to fast streams from solar active regions with flare activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号