首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coupled variability and air-sea interaction in the South Atlantic Ocean   总被引:2,自引:1,他引:2  
A total of 52 years of data (1949–2000) from the NCEP/NCAR reanalysis are used to investigate mechanisms involved in forcing and damping of sea surface temperature (SST) variability in the South Atlantic Ocean. Organized patterns of coupled ocean–atmosphere variability are identified using EOF and SVD analyses. The leading mode of coupled variability consists of an SST pattern with a strong northeast–southwest gradient and an SLP monopole centered at 15°W, 45°S. The anomalous winds associated with this monopole generate the SST pattern through anomalous latent heat flux and mixed layer deepening. Other heat flux components and anomalous Ekman transport play only a secondary role. Once established, the SST pattern is attenuated through latent heat flux. The higher SST modes are also induced by anomalous winds and destroyed by latent heat flux. It thus appears that the coupled variability in the South Atlantic Ocean consists of atmospheric circulation anomalies that induce SST anomalies through anomalous latent heat fluxes and wind-induced mixed layer deepening. These SST anomalies are destroyed by latent heat flux with no detectable systematic feedback onto the atmospheric circulation. Atmospheric variability in the South Atlantic is found to be largely independent of that elsewhere, although there is a weak relation with ENSO (El Niño-Southern Oscillation).  相似文献   

2.
 The last 810 years of a control integration with the ECHAM1/LSG coupled model are used to clarify the nature of the ocean-atmosphere interactions at low frequencies in the North Atlantic and the North Pacific. To a first approximation, the atmosphere acts as a white noise forcing and the ocean responds as a passive integrator. The sea surface temperature (SST) variability primarily results from short time scale fluctuations in surface heat exchanges and Ekman currents, and the former also damp the SST anomalies after they are generated. The thermocline variability is primarily driven by Ekman pumping. Because the heat, momentum, and vorticity fluxes at the sea surface are correlated in space and time, the SST variability is directly linked to that in the ocean interior. The SST is also modulated by the wind-driven geostrophic fluctuations, resulting in persistent correlation with the thermocline changes and a slight low-frequency redness of the SST spectra. The main dynamics are similar in the two oceans, although in the North Pacific the SST variability is more strongly influenced by advection changes and the oceanic time scales are larger. A maximum covariance analysis based on singular value decomposition in lead and lag conditions indicates that some of the main modes of atmospheric variability in the two oceans are sustained by a very weak positive feedback between the atmosphere, SST, and the strength of the subtropical and subpolar gyres. In addition, in the North Atlantic the main surface pressure mode has a small quasi-oscillatory component at 6-year period, and advective resonance occurs for SST around 10-year period, both periods being also singled out by multichannel singular spectrum analysis. The ocean-atmosphere coupling is however much too weak to redden the tropospheric spectra or create anything more than tiny spectral peaks, so that the atmospheric and oceanic variability is dominated in both ocean sectors by the one-way interactions. Received: 2 April 1999 / Accepted: 14 October 1999  相似文献   

3.
 Sea surface temperature (SST) and salinity (SSS) time series from four ocean weather stations and data from an integration of the GFDL coupled ocean-atmosphere model are analyzed to test the applicability of local linear stochastic theory to the mixed-layer ocean. According to this theory, mixed-layer variability away from coasts and fronts can be explained as a ‘red noise’ response to the ‘white noise’ forcing by atmospheric disturbances. At one weather station, Papa (northeast Pacific), this stochastic theory can be applied to both salinity and temperature, explaining the relative redness of the SSS spectrum. Similar results hold for a model grid point adjacent to Papa, where the relationships between atmospheric energy and water fluxes and actual changes in SST and SSS are what is expected from local linear stochastic theory. At the other weather stations, this theory cannot adequately explain mixed-layer variability. Two oceanic processes must be taken into account: at Panulirus (near Bermuda), mososcale eddies enhance the observed variability at high frequencies. At Mike and India (North Atlantic), variations in SST and SSS advection, indicated by the coherence and equal persistence of SST and SSS anomalies, contribute to much of the low frequency variability in the model and observations. To achieve a global perspective, TOPEX altimeter data and model results are used to identify regions of the ocean where these mechanisms of variability are important. Where mesoscale eddies are as energetic as at Panulirus, indicated by the TOPEX global distribution of sea level variability, one would expect enhanced variability on short time scales. In regions exhibiting signatures of variability similar to Mike and India, variations in SST and SSS advection should dominate at low frequencies. According to the model, this mode of variability is found in the circumpolar ocean and the northern North Atlantic, where it is associated with the irregular oscillations of the model’s thermohaline circulation. Received: 11 March 1996 / Accepted: 6 September 1996  相似文献   

4.
利用全球海洋—大气快速耦合模式(Fast Ocean-Atmosphere Model,FOAM),采用模式中的初值方法,研究了湾流区海温再现过程及其对北半球大气环流和气候的影响。FOAM模式很好地模拟了北大西洋湾流区的海温"再现"过程,模式中海面热通量异常与SST异常表现出不同步的响应特征。海面热通量异常在初冬季节达到最大值,而SST异常滞后,在冬季晚期达到最大值,从而在初冬和晚冬对北半球大气环流造成不同的影响。初冬季节北半球大气环流主要受海洋热通量异常的强迫,在北大西洋和北太平洋上空呈现相当正压的异常低压槽响应,北极地区为异常高压脊,类似北极涛动的负位相,可能造成欧洲南部和北非大陆气温偏高,亚洲大陆气温偏低。而晚冬季节北半球大气环流主要受SST异常的驱动,在北大西洋和北太平洋上空表现为相当正压的异常高压脊响应,北极地区为异常低压槽,类似北极涛动的正位相,可能造成欧洲南部和北非大陆气温偏低,亚洲大陆气温偏高,中国东部降水异常偏多30%左右。北太平洋大气环流的异常由北大西洋湾流区海洋热通量和SST异常强迫下游大气环流所激发,进一步通过Rossby驻波的能量频散东传至北太平洋而造成的。  相似文献   

5.
The present study examines the relationship between two types of El Niño–Southern Oscillation (ENSO), the central Pacific (CP) ENSO and the eastern Pacific (EP) ENSO, and the sea surface temperature (SST) variability over the South Pacific (SP) (20° S–60° S, 145° E–70° W) using NOAA OI SST for the period 1982–2006. The SP SST variability associated with the two types of ENSO varies with season. These two types of ENSO can excite different atmospheric patterns associated with the Pacific–South American mode, through which they influence the SP SST variability. Both the surface turbulent air–sea heat fluxes and the heat advection by Ekman currents (i.e., Ekman heat fluxes) have an important impact on the SST variability. An analysis of the surface mixed layer heat budget indicates that the heat fluxes (the sum of turbulent heat fluxes and Ekman heat fluxes) can effectively explain much of the SST variability related to the two types of ENSO.  相似文献   

6.
基于美国大气研究中心的CCSM3(Community Climate System Model version3)模式,对淡水扰动试验中不同热盐环流(thermohline circulation,THC)平均强度下,北大西洋气候响应的差异进行研究。结果表明:1)在不同平均强度下,北大西洋海洋、大气要素的气候态差异显著。相对于高平均强度,在低平均强度下,北大西洋地区海表温度(sea surface temperature,SST)、海表盐度(sea surface salinity,SSS)、海表密度(sea surface density,SSD)、表面气温(surface air temperature)异常减弱,最大负异常位于GIN(Greenland sea--Iceland sea--Norwegiansea)海域;海平面气压(sealev—elpressure,SLP)异常升高,相应于北大西洋海域降温,表现为异常冷性高压的响应特征;海冰分布区域向南扩大;北大西洋西部热带海域降水减少,导致热带辐合带(intertropical convergence zone,ITCZ)南移。2)在不同THC平均强度下,SST、SSS和SSD年际异常最显著的区域不同;在高平均强度下,最显著区域位于GIN海域,而在低平均强度下则位于拉布拉多海海域。3)在高平均强度下,北大西洋SST主导变率模态的变率极大区域位于GIN海,而在低平均强度下该极大区域不存在;北大西洋SLP的主导变率模态表现为类NAO型,但在高平均强度下,类NAO型表现得更明显。  相似文献   

7.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

8.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

9.
We analyze the processes responsible for the generation and evolution of sea-surface temperature anomalies observed in the Southern Ocean during a decade based on a 2D diagnostic mixed-layer model in which geostrophic advection is prescribed from altimetry. Anomalous air–sea heat flux is the dominant term of the heat budget over most of the domain, while anomalous Ekman heat fluxes account for 20–40% of the variance in the latitude band 40°?60°S. In the ACC pathway, lateral fluxes of heat associated with anomalous geostrophic currents are a major contributor, dominating downstream of several topographic features, reflecting the influence of eddies and frontal migrations. A significant fraction of the variability of large-scale SST anomalies is correlated with either ENSO or the SAM, each mode contributing roughly equally. The relation between the heat budget terms and these climate modes is investigated, showing in particular that anomalous Ekman and air–sea heat fluxes have a co-operating effect (with regional exceptions), hence the large SST response associated with each mode. It is further shown that ENSO- or SAM-locked anomalous geostrophic currents generate substantial heat fluxes in all three basins with magnitude comparable with that of atmospheric forcings for ENSO, and smaller for the SAM except for limited areas. ENSO-locked forcings generate SST anomalies along the ACC pathway, and advection by mean flows is found to be a non-negligible contribution to the heat budget, exhibiting a wavenumber two zonal structure, characteristic of the Antarctic Circumpolar Wave. By contrast SAM-related forcings are predominantly zonally uniform along the ACC, hence smaller zonal SST gradients and a lesser role of mean advection, except in the SouthWest Atlantic. While modeled SST anomalies are significantly correlated with observations over most of the Southern Ocean, the analysis of the data-model discrepancies suggests that vertical ocean physics may play a significant role in the nonseasonal heat budget, especially in some key regions for mode water formation.  相似文献   

10.
The interannual variability associated with the El Ni?o/Southern Oscillation (ENSO) cycle is investigated using a relatively high-resolution (T42) coupled general circulation model (CGCM) of the atmosphere and ocean. Although the flux correction is restricted to annual means of heat and freshwater, the annual as well as the seasonal climate of the CGCM is in good agreement with that of the atmospheric model component forced with observed sea surface temperatures (SSTs). During a 100-year simulation of the present-day climate, the model is able to capture many features of the observed interannual SST variability in the tropical Pacific. This includes amplitude, lifetime and frequency of occurrence of El Ni?o events and also the phase locking of the SST anomalies to the annual cycle. Although the SST warming during the evolution of El Ni?os is too confined spatially, and the warming along the Peruvian coast is much too weak, the patterns and magnitudes of key atmospheric anomalies such as westerly wind stress and precipitation, and also their eastward migration from the western to the central equatorial Pacific is in accord with observations. There is also a qualitative agreement with the results obtained from the atmospheric model forced with observed SSTs from 1979 through 1994. The large-scale dynamic response during the mature phase of ENSO (December through February) is characterized by an eastward displacement and weakening of the Walker cell in the Pacific while the Hadley cell intensifies and moves equatorward. Similar to the observations, there is a positive correlation between tropical Pacific SST and the winter circulation in the North Pacific. The deepening of the Aleutian low during the ENSO winters is well captured by the model as well as the cooling in the central North Pacific and the warming over Canada and Alaska. However, there are indications that the anomalies of both SST and atmospheric circulation are overemphasized in the North Pacific. Finally, there is evidence of a coherent downstream effect over the North Atlantic as indicated by negative correlations between the PNA index and the NAO index, for example. The weakening of the westerlies across the North Atlantic in ENSO winters which is related to a weakening and southwestward displacement of the Icelandic low, is in broad agreement with the observations, as well as the weak tendency for colder than normal winters in Europe. Received: 31 October 1995 / Accepted: 29 May 1996  相似文献   

11.
Indian Ocean sea surface salinity variations in a coupled model   总被引:2,自引:0,他引:2  
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan–Tibetan regions which drain into the Bay of Bengal through Ganga–Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.  相似文献   

12.
Interdecadal climate variability in the subpolar North Atlantic   总被引:1,自引:0,他引:1  
The statistical relationships between various components of the subpolar North Atlantic air-sea-ice climate system are reexamined in order to investigate potential processes involved in interdecadal climate variability. It is found that sea surface temperature anomalies concentrated in the Labrador Sea region have a strong impact upon atmospheric sea level pressure anomalies over Greenland, which in turn influence the transport of freshwater and ice anomalies out of the Arctic Ocean, via Fram Strait. These freshwater and ice anomalies are advected around the subpolar gyre into the Labrador Sea affecting convection and the formation of Labrador Sea Water. This has an impact upon the transport of North Atlantic Current water into the subpolar gyre and thus, also upon sea surface temperatures in the region. An interdecadal negative feedback loop is therefore proposed as an internal source of climate variability within the subpolar North Atlantic. Through the lags associated with the correlations between different climatic components, observed horizontal advection time scales, and the use of Boolean delay equation models, the time scale for one cycle of this feedback loop is determined to have a period of about 21 years.  相似文献   

13.
The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea surface salinity and temperature play an effective role in the interannual variability in the EEA region. Our results add a new source of variability in the area, which was often neglected by previous studies.  相似文献   

14.
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr.  相似文献   

15.
张学洪  俞永强  刘辉 《大气科学》1998,22(4):511-521
利用一个全球海气耦合模式长期积分所给出的资料,分析了冬季北太平洋海表湍流热通量(潜热和感热)异常及其对海表温度(SST)异常的影响,并比较了海表热通量诸分量和海洋内部的动力学过程对SST变化的相对重要性。结果表明,冬季热带外海洋上的湍流热通量是影响SST的主要因子,但在北太平洋中部海水的平流作用也不可忽视。冬季热带外海洋向大气释放的潜热和感热通量与SST倾向(而不是SST本身)之间存在着显著的相关,这同Cayan和Reynolds等利用COADS资料和NCEP资料同化模式分析的结果是一致的。模式诊断的结果支持这样一种看法:和热带海洋不同,冬季热带外海洋上的海气相互作用主要地表现为大气对海洋的强迫作用,而不是相反。模式给出的SST倾向的第一个EOF分量及其与海平面气压场的相关特征同Wallace等从观测资料分析所得到的结果是一致的;进一步的分析表明:在冬季北太平洋的大部分区域(特别是西太平洋),大尺度大气环流异常在很大程度上决定着SST的异常,而这种决定作用正是通过它对湍流热通量的强烈影响来实现的。  相似文献   

16.
Various ocean reanalysis data reveal that the subarctic Atlantic sea surface temperature (SST) has been cooling during the twentieth century. A similar cooling pattern is found in the doubling CO2 experiment obtained from the CMIP3 (coupled model intercomparison project third phase) compared to the pre-industrial experiment. Here, in order to investigate the main driver of this cooling, we perform the heat budget analysis on the subarctic Atlantic upper ocean temperature. The net surface heat flux associated with the increased concentration of greenhouse gases heats the subarctic ocean surface. In the most of models, the longwave radiation, latent heat flux, and sensible heat flux exert a warming effect, and the shortwave radiation exerts a cooling effect. On the other hand, the thermal advection by the meridional current reduces the subarctic upper ocean temperature in all models. This cold advection is attributed to the weakening of the meridional overturning circulation, which is related to the reduction in the ocean surface density. In particular, greater warming of the surface air than of the sea surface results in the reduction of surface evaporation and thereby enhanced freshening of the ocean surface water, while precipitation change was smaller than evaporation change. The thermal advections by both the wind-driven Ekman current and the density-driven geostrophic current contribute to cooling in most of the models, where the heat transport by the geostrophic current tends to be larger than that by the Ekman current.  相似文献   

17.
Sea ice plays an important role in the variability of the Labrador Sea especially in its most western part adjacent to an important region of deep convection. Winter-to-winter re-emergence and propagation of both sea-ice concentration (SIC) and sea surface temperature anomalies have been observed following years of high SIC in this region. They have potentially important links to water mass properties and freshwater and heat transports in the subpolar North Atlantic. This article builds on the results of two precursor papers and presents results from a coupled sea-ice–ocean model study of the interannual variability of sea ice in the Labrador Sea. The relationships between SIC and water column properties in the subpolar North Atlantic are assessed. Winters with high SIC and strong surface cooling are found to be conducive to intensified convection. Surface and mid-depth temperature and salinity anomalies are observed in the Labrador Sea and the northwestern North Atlantic during winters with anomalous Labrador Sea SIC. These anomalies are found to propagate along the major circulation patterns in the subpolar North Atlantic and to persist for up to three years.  相似文献   

18.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

19.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

20.
系统辨识(1):辨识导引   总被引:1,自引:1,他引:0  
海气交界面的能量交换与海洋平流共同决定海表面温度(sea surface temperature,SST)异常的形成、维持与衰减。基于作者近期的研究,本文回顾了海表面热通量(surface heat flux,SHF)反馈以及SST方差与海表热通量及海洋热输送方差之间的关系。海表热通量异常可近似为一个与SST成正比的线性反馈项与一个大气强迫项之和。SHF的反馈参数取决于SST和SHF间的滞后交叉协方差以及SST自协方差。这种反馈总体上为负反馈,减弱SST异常,海表湍流部分起主导作用。最强的反馈可见于南北两半球的中纬度,最大值出现在大洋的西部和中部位置并延伸至高纬度地区。SHF反馈于北半球秋冬两季增强,春夏两季减弱。这些反馈特征在CMIP3耦合气候模式中得到合理的模拟。然而,多数模式中反馈的强度与再分析资料的估值相比略为偏弱。与再分析资料的估值相比,"平均模式"反馈参数比单一模式有更相似的空间形态以及较小的均方根差。基于海表面能量收支平衡,SST的方差可以表示为3个要素的积:1)海表面辐射和湍流通量以及海洋热输送的方差之和;2)一个衡量SST持续性的传输系数G;3)一个反映海表热通量以及海洋热输送之间协方差结构的有效因子e。SST方差的地理分布类似于海表热通量及海洋热输送的方差之和,但为G和e因子所修正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号