首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
陆架边缘三角洲研究进展及实例分析   总被引:2,自引:1,他引:1  
自上世纪90年代以来,发育在大陆架边缘的一种特殊类型的三角洲(shelf-edge delta),因其厚度大,分布面积广,储层物性好,常常与陆坡深水扇体伴生,成藏条件好等特点而引起了广泛关注,成为当前国际沉积学界研究的热点和油气勘探新领域。陆架边缘三角洲一般形成于相对海平面下降或低位时期,主要受控于物源供给、可容纳空间和气候变化,并受到陆坡构造活动影响;也可发育在高位时期,受到波浪与潮汐的影响。前人提出了利用陆架边缘迁移轨迹预测深水沉积和基于陆架斜坡发育模式预测深水沉积的模型,即强烈抬升的陆架边缘迁移轨迹、强烈加积的陆架斜坡发育模式,对应的深水区物质传输体系为泥质;水平—轻微下降的陆架边缘迁移轨迹、强烈前积的陆架斜坡发育模式,预示着大量砂体被搬运至深水区;轻微抬升的陆架边缘迁移轨迹、加积与前积的陆架斜坡发育模式,暗示深水沉积砂体发育介于上述二者陆架边缘迁移与深水扇预测模式之间。陆架边缘三角洲—深水扇规模砂体毗邻优质烃源岩,具备多种类型的油气运移通道,成藏条件良好,是油气勘探的有利领域。实例分析表明:渐新世珠海组沉积时期构造相对稳定,在古珠江充足的供源条件下,南海北坡珠江口盆地鹤山凹陷发育陆架边缘三角洲并伴随陆架不断向海迁移而不断进积,S型前积体不断向海迁移,并在晚期发育下切谷及大型盆底扇沉积。鹤山凹陷珠海组沉积时期发育水平—轻微下降的陆架边缘迁移轨迹,对应于强烈前积的陆架斜坡发育模式,在珠海组沉积晚期发育较大规模叠合连片深水扇富砂沉积体系,是研究区极好的潜在油气勘探目标。  相似文献   

2.
Cauvery Basin, a pericratonic rift basin along the Eastern Continental Margin of India, evolved during the breakup of the Eastern Gondwanaland. It exposes both syn-rift and later post-rift passive margin deposits ranging from Barremian to Miocene. The Karai Formation, upper Aptian-lower/middle (?) Turonian represents the oldest passive margin in the Cauvery Basin. It is bounded at both contacts by major sequence boundaries viz. the break-up unconformity and the Turonian tilt event. The present communication deals with the ichnology of the Karai Formation and its integration with sedimentary facies and biostratigraphy to interpret the sea level changes during deposition. A traverse between the villages Karai and Kulakkalnattam was studied in detail for this purpose. Based on the lithological position, characters and internal grain size trends, the Karai Formation is sub-divided into four informal lithologic units; the lower three units, constitute a lithostratigraphic unit known in literature as the Gypsiferous Clay Member, while the uppermost, corresponds to the Sandy Clay Member. At the base, clays of the Karai Formation unconformably onlap onto the Precambrian basement or the fluvial syn-rift deposits across the break-up unconformity. Upper Aptian to middle Cenomanian, units I and II showing the distal Cruziana ichnofacies, deepening of the basin and a retrogradational stacking pattern represent a transgressive system tract (TST). This long phase of transgression is attributed to continuous accommodation created by the post-breakup thermal subsidence. The upper part of unit II (middle Cenomanian) shows condensation, with its top representing the maximum flooding surface (MFS). Upper Cenomanian to lower/middle (?) Turonian, units III and IV characterised by a shift from the distal Cruziana to the Skolithos ichnofacies, an initial aggradational and later deltaic, progradational stacking pattern resulting from a fall in the relative sea level and filling up of accommodation space represent the highstand system tract (HST). A further fall in the relative sea level led to the exposure, incision and erosion of the Karai Formation over which the younger transgressive sequence of the Trichinopoly Group was deposited with an angular unconformity.  相似文献   

3.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

4.
Middle Pleistocene sedimentation in the Bradanic area (foreland basin of the southern Apennines) took place in a setting in which tectonic tilting created anomalous shelf gradients and where slope failures repeatedly occurred at the front of quickly prograding sedimentary wedges. A coarse-grained wave-dominated coastal/deltaic complex consisting of two downstepping, forced-regressive wedges prograded during the falling stage of a middle Pleistocene glacio-eustatic fluctuation (P. lacunosa Zone). Conglomerate clinoforms show a dramatic increase in relief and steepness as a result of the infill of collapse scars. Compaction of prodelta mudstones, due to the load of the scar-filling conglomerates, resulted in a slight deformation of the fills into broad synformal structures, with gentle anticlinal closures at their distal ends. Accommodation space was created, resulting in splitting of the prograding bodies into high-frequency cycles which are thought to reflect the interaction of localized compactional subsidence with autocyclic shifting of river mouths and/or climatically induced variations in sediment supply. Available chronologic constraints suggest average durations of small-scale cycles on time-scales shorter than those of Milankovitch orbital frequencies. This case history highlights the importance of some factors which are often neglected in sequence stratigraphic models, e.g. physiography of the sea floor and localized sediment loading. On one hand, the bulk of falling-stage wedges can be preserved as they prograde into intraplatform depressions represented by collapse scars; on the other, significant accommodation space is created by compactional subsidence, leading to the splitting of a simple progradational unit into multiple, small-scale cycles.  相似文献   

5.
黔南地区早、中泥盆世沉积演化的动力机制   总被引:3,自引:0,他引:3  
泥盆纪时,黔南地区为一相对稳定的台地,早泥盆世晚期,海水开始漫漫其上.初始发育陆源碎屑沉积体系,中泥盆世发育陆源碎屑~碳酸盐混合体系.空间配置有下列几种类型:滨岸障壁~泻湖~河流体系,碳酸盐缓坡~滨岸障壁~泻湖体系,镶边型碳酸盐台地~泻湖三角洲(潮坪)体系,碳酸盐缓坡~三角洲体系。基底断裂限定了台地和台间沟的延限范围和演化进程,这两种不同沉积背景的沉积演化旋回可能主要受海平面变化控制。  相似文献   

6.
Clastic, depositional strandplain systems have the potential to record changes in the primary drivers of coastal evolution: climate, sea‐level, and the frequency of major meteorological and oceanographic events. This study seeks to use one such record from a southern Brazilian strandplain to highlight the potentially‐complex nature of coastal sedimentological response to small changes in these drivers. Following a 2 to 4 m highstand at ca 5·8 ka in southern Brazil, falling sea‐level reworked shelf sediment onshore, forcing coastal progradation, smoothing the irregular coastline and forming the 5 km wide Pinheira Strandplain, composed of ca 500 successive beach and dune ridges. Sediment cores, grab samples and >11 km of ground‐penetrating radar profiles reveal that the strandplain sequence is composed of well‐sorted, fine to very‐fine quartz sand. Since the mid‐Holocene highstand, the shoreline prograded at a rate of ca 1 to 2 m yr?1 through the deposition of a 4 to 6 m thick shoreface unit; a 1 to 3 m thick foreshore unit containing ubiquitous ridge and runnel facies; and an uppermost beach and foredune unit. However, the discovery of a linear, 100 m wide barrier ridge with associated washover units, a 3 to 4 m deep lagoon and 250 m wide tidal inlet within the strandplain sequence reveals a period of shoreline transgression at 3·3 to 2·8 ka during the otherwise regressive developmental history of the plain. The protected nature of Pinheira largely buffered it from changes in precipitation patterns, wave energy and fluvial sediment supply during the time of its formation. However, multiple lines of evidence indicate that a change in the rate of relative sea‐level fall, probably due to either steric or ice‐volume effects, may have affected this coastline. Thus, whereas these other potential drivers cannot be fully discounted, this study provides insights into the complexity of decadal‐scale to millennial‐scale coastal response to likely variability in sea‐level change rates.  相似文献   

7.
《Sedimentology》2018,65(3):809-841
Degradation of basin‐margin clinothems around the shelf‐edge rollover zone may lead to the generation of conduits through which gravity flows transport sediment downslope. Many studies from seismic‐reflection data sets show these features, but they lack small‐scale (centimetre to metre) sedimentary and stratigraphic observations on process interactions. Exhumed basin‐margin clinothems in the Tanqua depocentre (Karoo Basin) provide seismic‐reflection‐scale geometries and internal details of architecture with depositional dip and strike control. At the Geelhoek locality, clinothem parasequences comprise siltstone‐rich offshore deposits overlain by heterolithic prodelta facies and sandstone‐dominated deformed mouth bars. Three of these parasequences are truncated by a steep (6 to 22°), 100 m deep and 1·5 km wide asymmetrical composite erosion surface that delineates a shelf‐incised canyon. The fill, from base to top comprises: (i) thick‐bedded sandstone with intrabasinal clasts and multiple erosion surfaces; (ii) scour‐based interbedded sandstone and siltstone with tractional structures; and (iii) inverse‐graded to normal‐graded siltstone beds. An overlying 55 m thick coarsening‐upward parasequence fills the upper section of the canyon and extends across its interfluves. Younger parasequences display progressively shallower gradients during progradation and healing of the local accommodation. The incision surface resulted from initial oversteepening and high sediment supply triggering deformation and collapse at the shelf edge, enhanced by a relative sea‐level fall that did not result in subaerial exposure of the shelf edge. Previous work identified an underlying highly incised, sandstone‐rich shelf‐edge rollover zone across‐margin strike, suggesting that there was migration in the zone of shelf edge to upper‐slope incision over time. This study provides an unusual example of clinothem degradation and readjustment with three‐dimensional control in an exhumed basin‐margin succession. The work demonstrates that large‐scale erosion surfaces can develop and migrate due to a combination of factors at the shelf‐edge rollover zone and proposes additional criteria to predict clinothem incision and differential sediment bypass in consistently progradational systems.  相似文献   

8.
The Haystack Mountains Formation (Campanian, Mesaverde Group, US Western Interior Basin, Wyoming) contains a series of shallow-marine sandbodies, extending tens of kilometres out from a basin margin. The study succession (around 200 m thick) is composed of eight major sandstone tongues (Bolten Ranch, O'Brien Spring, Seminoe 1–2–3–4, Hatfield 1 and 2 members), each partially encased within marine shale intervals. The Formation is ‘sequential’at several scales. At the largest scale, the whole succession presents an aggradational to basinward-stepping stacking pattern of the sandstone tongues. At a lower level, each tongue (member) is characterized internally by two different types of lithosome: the first represents shoreface progradation with hummocky cross-strata passing up to swaley and trough cross-stratified sandstones. This lithosome is erosively truncated at its top in most cases, and has a general sheet-like geometry along strike, whereas down dip it displays a series of sharp-bounded clinothems. The latter sometimes indicate a downward as well as a basinward shift through time, as suggested by the occurrence of coarser and/or shallower facies at a lower level in the shoreface profile. The second type of lithosome is sheet- or wedge-like and sharply overlies the shoreface deposits. The lithosome consists of laterally widespread units of planar tabular to trough cross-bedded medium sandstones passing laterally (in a dip direction) into bioturbated sandstones. The lower part of this lithosome is progradational, becoming retrogradational into the overlying shales. The facies within the cross-bedded lithosome suggest a tidally dominated delta front to estuarine depositional setting. The two types of lithosome are not related genetically. The erosion surface separating the two lithosomes is a sequence boundary separating forced-regressive (relative sea-level fall) shoreface deposits from lowstand to transgressive (early relative sea-level rise), cross-bedded deposits. The uppermost part of the cross-stratified lithosome shows a landward-stepping of component parasequences and is abruptly blanketed by open-marine shales. The most widespread cross-bedded lithosomes are apparently best developed in the lowermost members of the Haystack Mountains Formation, i.e. in the aggradational part of the large-scale progradational succession. In the uppermost, highly progradational sandstone tongues, the shoaling-upward shoreface lithosome dominates, whereas the cross-bedded lithosome occurs in narrow, lensoid belts, or is absent. The middle portion of the succession shows intermediate characteristics. The vertical variation in geometry, thickness and progradational extent of successive cross-bedded lithosomes results from greater confinement of the incised nearshore systems both in space (landward direction) and in time (from the aggradation to the progradation architecture). The latter is a consequence of a decreasing rate of accommodation creation through time.  相似文献   

9.
Variability in accommodation and sedimentation rates within a basin generates significant deviations in the along-strike stratal stacking patterns of systems tracts. This variability can lead to coeval depositional units that record the juxtaposition of transgressive (retrogradational) and regressive (progradational) stratal stacking patterns. In scenarios where transgressive and regressive units are deposited concurrently, challenges arise when attempting to correlate and place systems tracts into a sequence stratigraphic framework. In these scenarios, the maximum flooding surface records a high level of diachroneity, with the position of the surface variable throughout the stratigraphic column. In this study, Viking Formation (late Albian) deposits in the Western Canada Sedimentary Basin, central Alberta, Canada, preserve significant along-strike variability of palaeoshorelines that developed in response to autogenic processes as well as allogenic controls that were active during deposition. Specifically, structural reactivation of Precambrian basement structures during Viking deposition led to significant variability in depositional environments along the palaeoshoreline. The incremental basement reactivation of the Precambrian Snowbird Tectonic Zone influenced sedimentation patterns and the creation of anomalous zones of accommodation in localized areas of the basin. Across fault boundaries and within the anomalously thick strata, both progradational and retrogradational stacking patterns occur within broadly contemporaneous deposits, complicating the correlation of stratigraphic units. While the concomitant deposition of transgressive and regressive units has been documented in a number of modern marine analogues, the concept is rarely applied to ancient successions. By identifying along-strike variabilities in shoreline geometries and incorporating the autogenic and allogenic controls that were active during deposition, a more accurate sequence stratigraphic framework can be proposed.  相似文献   

10.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

11.
南海北部白云凹陷早中新世东部沉积体系研究   总被引:1,自引:0,他引:1  
基于白云凹陷东部钻井、岩芯和地震资料,通过地震属性分析、地震相分析及钻井岩芯分析,证实了白云凹陷在23.8~21 Ma之间除存在北部物源外还存在来自东沙隆起的东部物源体系,从而扩大了白云凹陷深水碎屑岩沉积研究领域。通过层序地层学研究和沉积相分析,建立了东部沉积体系沉积及演化模式:该体系在低位域形成海底扇沉积;水进域形成碳酸盐岩和硅质碎屑岩混合沉积;高位体系域主要发育高位三角洲沉积,其主要受相对海平面变化及物源供给控制。  相似文献   

12.
The Kerinitis Delta in the Corinth Rift, Greece, is a footwall derived, coarse‐grained, Gilbert‐type fan delta deposited in the hangingwall of a linked normal fault system. This giant Gilbert‐type delta (radius 3·8 km, thickness > 600 m) was supplied by an antecedent river and built into a brackish to marine basin. Although as yet poorly dated, correlation with neighbouring deltas suggests that the Kerinitis Delta was deposited during a period of 500 to 800 ka in the Early to early Middle Pleistocene. Facies characterizing a range of depositional processes are assigned to four facies associations (topset, foreset, bottomset and prodelta). The dominantly fluvial topset facies association has locally developed shallow marine (limestone) and fluvial‐shoreface sub‐associations. This delta represents a subsidence‐dominated system in which high fault displacement overwhelmed base‐level falls (creation of accommodation predominantly ≥ 0). Stratal geometries and facies stacking patterns were used to identify 11 key stratal surfaces separating 11 stratal units. Each key stratal surface records a landward shift in the topset breakpoint path, indicating a rapid increase in accommodation/sediment supply. Each stratal unit records a gradual decrease in accommodation/sediment supply during deposition. The cyclic stratal units and key stratal surfaces are interpreted as recording eustatic falls and rises, respectively. A 30 m thick package of foresets below the main delta records the nucleation of a small Proto‐delta probably on an early relay ramp. Based on changes in stratal unit geometries, the main delta is divided into three packages, interpreted as recording the initiation, growth and death of the controlling fault system. The Lower delta comprises stacked, relatively thin, progradational stratal units recording low displacement on the young fault system (relay ramp). The Middle delta comprises vertically stacked stratal units, each recording initial aggradation–progradation followed by progradation; their aggradational component increases up through the Middle delta, which records the main phase of increasing rate of fault displacement. The Upper delta records pure progradation, recording abrupt cessation of movement on the fault. A major erosion surface incising basinward 120 m through the Lower and Middle delta records an exceptional submarine erosion process (canyon or delta collapse).  相似文献   

13.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

14.
15.
The Lower Triassic succession of Barles, Alpes de Haute Provence, France, comprises an unconformable quartz arenite sand body of 90m thickness. The succession may be informally divided into (i) lower channellized cross-bedded member overlain by (ii) an upper fining upward member. The lower member comprises vertically stacked, subtidal channel units separated into five major sand bodies by thin developments of fine grained channel margin and shoal deposits. Subtidal channel fill deposits are dominated by varying scales of cross bedding. These scales vary systematically from the base to the top of the member, with large scale planar sets dominating the lowest channel sand body (sand body 1), medium scale planar and trough cross bedding characterizing sand bodies 2-4, the largest scale planar sets in the highest sand body (sand body 5). This upward change in cross bedding scale is concomitant with a decrease in both the relief of major channel sand body erosion surfaces, and the proportion of preserved interchannel shoal deposits. The succeeding fining upward member comprises small scale tidal channel units overlain by channel shoal and tidal flat deposits. Tidal flat sequences are characterized by parallel laminated, wave and current rippled sandstones separated by bioturbated, fine grained siltstones and mudstones. The vertical variation in facies of the Lower Triassic succession suggests two main periods of deposition. The lower member is considered to preserve successively more seaward components of a transgressive estuarine complex. The overlying upper member records the seaward progradation of tidal channel, shoal and tidal flat environments. The unconformity bounded nature of the lower member, combined with its systematic variation in facies, suggests it may represent an incised valley-estuarine fill developed in response to an early Triassic relative sea level fall and subsequent rise. Succeeding tidal channel and tidal flat deposits forming the upper fining upward member reflect a change in sediment supply and/or rate of relative sea level rise comparable with a progradational shoreline. It is unclear whether this final depositional episode represents a period of highstand progradation or a later lowstand shoreline system developed following a further period of relative sea level fall and rise.  相似文献   

16.
<正>The Outangdi Formation in Jiangshan,Zhejiang,is the mixing deposit of terrigenous clastics and carbonates in Weiningian of the late Carboniferous.The mixing deposits include interbeddings, which constitute a series of alternated clastic and carbonate beds and mixing within the same bed which forms"hunji rock".The Outangdi Formation has the features of intercalated marine and terrestrial deposits with the progradational sequences,which are lower fine and upper coarse sedimentary granularity in the section.Hunji rock is formed in a seashore environment.It is a mixed carbonate sediment found in beaches or tideland facies with quartz sand taken from a bayou or beach by coastwise flow and circumfluence.There are two kinds of hunji sequences:(1) interbeds of sandstone and carbonate rock in seashore environments;and(2) interbeds of clastics in river facies and carbonate rock in ocean facies.It is indicated that mixing depositions belong to"facies mixing",affected mainly by regional tectonic uplift,rise of the global sea level,and the dynamics of water medium in the basin. Regional sea level periodic changes and progradational sequences probably resulted from the intense uplift of the old land called Cathaysia.The classification and name of mixed sediments are also discussed in the present study.Interbeds and alternated beds of clastic and carbonate beds are named"hunji sequence",a new genetic term.It is suggested that hunji rock means a special sediment event of mixing terrigenous clastics and carbonates instead of a name of a specific rock.  相似文献   

17.
Late-Holocene evolution of the Mahakam delta, East Kalimantan, Indonesia   总被引:1,自引:0,他引:1  
The late-Holocene Mahakam delta, located along the tropical eastern shore of Kalimantan, Indonesia, is considered to be a textbook example of a mixed tide–fluvial dominated delta system. The delta prograded about 60 km during the past 5000 years, which led to the development of a distinct network of distributary and tidal channels. Wave action is low due the limited fetch in the narrow strait of Makassar. Mahakam River discharge is about a quarter of the Mississippi River discharge and is characterized by absence of flood surges. Therefore, natural levees, crevasse splays and avulsions are absent in the delta plain. For the past four decennia, both modern and ancient Mahakam delta deposits have been studied in detail in order to better understand subsurface Miocene and Tertiary Mahakam deposits, which host large volumes of hydrocarbons.

This study focuses on the dynamics and stratal patterns of delta plain, delta-front platform deposits and suspended sediments. Due to the predominance of semi-diurnal tides and the associated flow reversals, depositional patterns are highly variable which has resulted in the formation of characteristic sand–mud couplets. The distribution of the sand–mud couplets found in this study differs from previously proposed conceptual models. They are limited to the fluvial domain and form in the distributary channels (lateral channel bar) or at the fluvial dominated delta-front platform, which flanks the mouth bar deposits in offshore direction. The sand–mud couplets which formed as delta-front platform and lateral channel bar deposits are similar and can only be identified based on their 14C age. The sand content decreases significantly towards the tidal dominated areas due to limitation in transport capacity. Turbidity measurements taken in front of the river mouth also show rapid settlement of river plume sediments.

Some 22 new AMS 14C dates show that late Holocene sea level history resembles the eustatic sea level curve giving a first approximation of the Late Holocene sea level history for East Kalimantan. The dates suggest that the progradational delta system evolved under conditions of slowly rising sea level, which compares well to the eustatic sea level curve. In addition, calculated averaged deposition rates of the sand–mud couplets indicate that deposition is driven by the spring–neap tide cycles instead of the daily tidal cycle.  相似文献   


18.
Abstract Accumulation within the unconformity‐based Hauterivian Avilé Sandstone of the Neuquén Basin, Argentina, was characterized by a close interaction between fluvial and aeolian processes developed after a major relative sea‐level drop that almost completely desiccated the entire basin and juxtaposed these non‐marine deposits on shallow‐ and deep‐marine facies. Aeolian deposits within the Avilé Member include dune (A1) and sand sheet (A2) units that characterize the lower part of the unit. Fluvial deposits comprise distal flood units (F1) interbedded with aeolian dune deposits in the middle part of the succession, and low‐ (F2) and high‐sinuosity (F3) channels associated with floodplain deposits (F4) towards the top. The internal characteristics of the aeolian system indicate that its accumulation was strongly controlled by water‐table dynamics, with the development of multiple horizontal deflation super surfaces that truncate dune deposits and form the basal boundary of flood deposits and sand sheet units. A long‐term wetting‐upward trend is recorded throughout the entire unit, with an increase in fluvial activity towards the top and the development of a more permanent fluvial system overlying a major erosion surface interpreted as a sequence boundary. The upward increase in water‐table influence might be related to relative sea‐level rise, which controlled the position of the water table and allowed the accumulation of tabular aeolian units bounded by horizontal deflation surfaces. This high‐frequency, eustatically driven process acted together with a long‐term climatic change towards wetter conditions.  相似文献   

19.
The early Stephanian Bonar Cyclothem of the Sydney Basin, Nova Scotia, contains an erosional surface cut through coastal plain strata with economic coals and distributary channel bodies. The erosion surface is interpreted as a palaeovalley 20 m deep and at least 7 km wide that marks a sequence boundary formed during relative fall in sea level. The palaeovalley is filled with stacked alluvial channel bodies which become more isolated as the valley fill passes upward into red, alluvial plain deposits, probably laid down in an anastomosed river system. In an adjacent, interfluve area, calcretes and red, vertic palaeosols cap coastal strata. Assemblage analysis of agglutinated foraminifera and thecamoebians indicates that the palaeovalley was filled with freshwater sediments before an initial marine transgression flooded the alluvial surface and adjacent interfluve. Valley incision probably reflects glacioeustatic sea level fall. However, the alluvial nature of the valley deposits suggests that valley filling reflects an abundant sediment supply during lowstand and/or transgressive stages and was not a direct consequence of sea level rise. During the subsequent transgression phase, aggradation was rapid as sediment supply apparently kept pace with rising sea level. Features of both channel and extra-channel facies suggest that seasonality intensified during the transition from coastal plain to palaeovalley and alluvial plain deposition.  相似文献   

20.
The Late Eocene-Early Oligocene sedimentary fill of the Lemnos Island, NE Greece, is represented by a submarine fan and shelf deposits. Turbidites in the system occur as a laterally isolated body, with one sediment influx center present. The influx center is a proximal distributary channel that occupies a position approximately in the fan’s center and displays the coarsest sediment in the study area. It also suggests in association with the main palaeocurrent direction toward NE a curved shape for the fan. The stratigraphic succession of the submarine fans indicates that their sedimentation started during the base level fall and completed shortly after the base level rise. As a consequence, the study area was filled by turbidites that correspond to forced regressive, lowstand normal regressive, and transgressive genetic units. The progradational bedsets, within the basal part of the turbidite deposits, recorded the history of the base level fall. The mixed progradational/aggradational style of the upper part of the submarine fan system suggests that the regression of the shoreline is driven by sediment supply during a period of base-level rise at the shoreline, or at a time of baselevel stillstand. The overlying shelf facies consist of thick to medium bedded sandstones and mudstones, which display a general thinning upward trend. The base of the mudstone facies that overlie the thick-bedded, amalgamated sandstones corresponds to a transgressive surface. This surface separates the low-stand deposits (thick-bedded sandstones) from the high stand deposits (mudstone facies), suggesting that deposition of shelf facies occurred during a transgressive system tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号