首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of nonlinear localized dust acoustic (DA) is addressed in a plasma comprising positive ions, negative ions, and mobile negatively charged dust grains. We first consider the case when the grain charge remains constant and discuss later the case when the charge variations are self-consistently included. It is found that a relative increase of the positive ion density favors the propagation of the DA solitary waves, in the sense that the domain of their admissible Mach numbers enlarges. Furthermore, electronegativity makes the dust acoustic solitary structure more spiky. When the dust grain charge Q d is allowed to fluctuate, the latter is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the variable charge DA solitary wave. Q d adopts a localized profile and becomes more negative as the number of charges Z (−) of the negative ion increases. The dust grains are found to be highly localized. This localization (accumulation) caused by a balance of the electrostatic forces acting on the dust grains becomes more effective for lower values of Z (−). An increase of Z (−) may lead to a local depletion of the negative ions from the region of the soliton’s localization. The results are useful to understand the salient features of localization of large amplitude dust acoustic waves in cosmic plasmas such as the ionospheric D-region and the mesosphere.  相似文献   

2.
The nonlinear coupling between a large amplitude electromagnetic wave and the slow background motion in a dusty plasma is considered. Stimulated scattering instabilities are investigated. The relevance of our investigation to cometary and astrophysical plasmas is pointed out.  相似文献   

3.
Interaction of dust acoustic solitary waves in plasmas consisting of medium disorders is investigated. Disorders and inhomogeneities of the medium are added to the equation of motion as perturbative terms through the medium parameters. The effects of these perturbations on the behaviour of solitary waves are studied with numerical simulations and the results are compared with theoretical predictions in a uniform media.  相似文献   

4.
Progress in understanding the nonlinear features of dust-acoustic waves (DAWs) which accompany a collisional strongly and weakly coupled unmagnetized dusty plasma with Boltzmann distributed electrons, ions and negatively charged dust grains is presented. By using a hydrodynamic model, the Korteweg–de Vries-Burgers (KdV-Burgers) equation is derived. The existence regions of the solitary pulses are defined precisely. Furthermore, numerical calculations reveal that, due to collisions, the DAWs damp waves and the damping rate of the waves depends mainly on the collision frequency. The collisions are found to significantly change the basic properties of the DAWs. The effects of electron-to-ion concentration ratio, and ion-to-electron temperature ratio have important roles in the behavior of the DAWs. The results may have relevance in space and laboratory dusty plasmas.  相似文献   

5.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

6.
《Planetary and Space Science》2007,55(10):1464-1469
The ion-acoustic instability in a dusty negative ion plasma is investigated, focusing on the parameter regime in which the negative ion density is much larger than the electron density. The dynamics of the massive dust grains are neglected, but collisions of electrons and ions with dust grains in addition to other collisional processes are taken into account. The presence of a population of charged dust can change the frequency of the fast wave, lead to additional damping due to ion–dust collisions, and change the conditions for wave growth. Applications to dusty negative ion plasmas in the laboratory and in space are discussed.  相似文献   

7.
8.
The propagation of solitary waves in an unmagnetized collisional dusty plasma consisting of a negatively charged dust fluid, positively charged ions, isothermal electrons, and background neutral particles is studied. The ionization, ion loss, ion–neutral, ion–dust, and dust–neutral collisions are considered. Applying a reductive perturbation theory, a damped Korteweg–de Vries (DKdV) equation is derived. On the other hand, at a critical phase velocity, the dynamics of solitary waves is governed by a damped modified Korteweg–de Vries (DMKdV) equation. The nonlinear properties of solitary waves in the two cases are discussed.  相似文献   

9.
10.
A model for ion-acoustic waves in the solar atmosphere is presented. In the limit of strongly magnetized plasma this model leads to the Zakharov-Kuznetsov equation which possesses a flat solitary wave solution. An initial-value problem for this equation is solved numerically to show a transition of the flat solitary waves into spherical solitary waves. The paper suggests further developments of an ion-acoustic wave theory that may improve our knowledge of ion-acoustic waves and lead to the possibility of their being detected in the solar atmosphere.  相似文献   

11.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

12.
The oblique collision of nonlinear quantum dust-acoustic (NQDA) solitary waves in a three-dimensional (3D) magnetized dense dusty plasma is investigated. Furthermore, two coupled Kortwege–de Vries equations for describing our model and the analytical phase shifts after the oblique collision of two NQDA solitary waves are derived using the extended Poincaré–Lighthill–Kuo (PLK) method. The modification in the phase shift and the trajectory of the NQDA solitary waves structures due to the inclusion of oblique collision and external magnetic field are discussed numerically. The numerical results are applied to high density astrophysical situations such as in superdense white dwarfs.  相似文献   

13.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

14.
15.
The Kelvin-Helmholtz instability in magnetized, dusty plasmas is examined, for both negatively and positively charged dust. The critical shear in the ion velocity along the magnetic field is computed as a function of the charge residing on dust grains.  相似文献   

16.
The Head on collision of dust ion acoustic solitary waves (DIASWs) in a magnetized quantum dusty plasma is investigated. Two sides Korteweg-de Vries (KdV) equations are obtained, the analytical phase shifts and the trajectories after the head-on collision of two DIASWs in a three species quantum dusty plasma are derive by using the extended version of Poincaré-Lighthill-Kuo (PLK) method. It is observed that the phase shifts are significantly affected by the quantum parameters like quantum diffraction, the ion cyclotron frequency and the ratio of the densities of electrons to ions.  相似文献   

17.
Using Boltzmann-Vlasov kinetic model for nonthermal distributed electron-positron-ion plasma of our Earth’s magnetosphere and the solar wind streaming plasma can drive ion-acoustic waves unstable. It is found that the growth rate increases with the decrease of spectral index and increases with the streaming velocity of the solar wind. The numerical results are also presented by choosing some suitable parameters of magnetospheric plasma.  相似文献   

18.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

19.
Linear and nonlinear propagation of dust drift waves are investigated in the presence of Cairns and Kappa distributed ion population and Boltzmannian electrons. It is found the frequency of the dust drift wave is greatest for the Cairns, intermediate for Kappa and the least for the Maxwellian distributed ions. Using the drift approximation, a nonlinear equation is derived for the dust drift shock waves which reduces to a Korteweg-de Vries-Burgers (KdVB)-like equation in the comoving frame of reference. The solution of the KdVB-like equation is obtained using the tanh method. It is found that the non-Maxwellian ion population, dust neutral collision frequency as well as the inverse dust density scale length inhomogeneity alter the propagation characteristics of the nonlinear dust drift shock waves. Interestingly, it is found that the non-Maxwellian ion population modifies the scale lengths over which the nonlinear structures are formed. The work presented here may be useful to understand the low frequency electrostatic shock waves in inhomogeneous dusty plasmas such as those found in planetary environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号