首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between Doppler shift patterns observed in the transition region and magnetic field patterns observed in the photosphere is studied using coaligned pairs of Civ Dopplergrams and Fei magnetograms. Categories of magnetic features are defined - including neutral lines, unipolar regions, strong field regions, weak field regions, and magnetic boundaries - and from these, magnetic associations are determined for 159 V 0 lines separating areas of relative blueshift and redshift observed in and around active regions. The cases are subdivided on the basis of whether blueshifts or redshifts are observed on the side of the V 0 line nearest the solar limb.Two main results are that V 0 lines associated with neutral lines tend to have limbward blueshifts, while V 0 lines associated with unipolar regions tend to have limbward redshifts. These and other results provide supportive evidence for the active region model proposed recently by Klimchuk, in which relative redshifts occur where strong vertical fields penetrate the surface, and relative blueshifts occur where these same fields have spread out to become horizontal. It is likely that the relative blueshifts correspond to absolute Doppler shifts of very small amplitude, possibly even absolute redshifts.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
Spectro-polarimetric observations at 2231 nm were made of NOAA 10008 near the west solar limb on 29 June 2002 using the National Solar Observatory McMath–Pierce Telescope at Kitt Peak and the California State University Northridge – National Solar Observatory infrared camera. Scans of spectra in both Stokes I and Stokes V were collected; the intensity spectra were processed to remove strong telluric absorption lines, and the Stokes V umbral spectra were corrected for instrumental polarization. The sunspot temperature is computed using the continuum contrast and umbral temperatures down to about 3700 K are observed. A strong Tii line at 2231.0 nm is used to probe the magnetic and velocity fields in the spot umbra and penumbra. Measurements of the Tii equivalent width versus plasma temperature in the sunspot agree with model predictions. Zeeman splitting measurements of the Stokes I and Stokes V profiles show magnetic fields up to 3300 G in the umbra, and a dependence of the magnetic field on the plasma temperature similar to that which was seen using Fei 1565 nm observations of the same spot two days earlier. The umbral Doppler velocity measurements are averaged in 16 azimuthal bins, and no radial flows are revealed to a limit of ±200 m s–1. A Stokes V magnetogram shows a reversal of the line-of-sight magnetic component between the limb and disk center sides of the penumbra. Because the Tii line is weak in the penumbra, individual spectra are averaged in azimuthal bins over the entire penumbral radial extent. The averaged Stokes V spectra show a magnetic reversal as a function of sunspot azimuthal angle. The mean penumbral magnetic field as measured with the Stokes V Zeeman component splitting is 1400 G. Several weak spectral lines are observed in the sunspot and the variation of the equivalent width versus temperature for four lines is examined. If these lines are from molecules, it is possible that lines at 2230.67, 2230.77, and 2231.70 nm originate from OH, while the line at 2232.21 nm may originate from CN.  相似文献   

3.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

4.
Using observational data on 14 sunspots from the Sayan Observatory vector magnetograph, a study was made of the relationship between the sunspot magnetic field and the Evershed motions. It is shown that the central area of the solar disk is dominated by an anti-correlation of the longitudinal magnetic field B and the line-of-sight velocity V when a maximum of V corresponds to the neutral line of the longitudinal field. Near the limb there usually is a coincidence of the field and velocity neutral lines. There is evidence for the possible asymmetric character of the effect with respect to the central meridian.  相似文献   

5.
The absolute limb effect is presented for Fei lines 3767 and 3969; for five Tii lines of multiplet 42 near 4535 and one Tiii line at 4534; two lines of Mgi, 4571 and 5172; two lines of Baii at 5854 and 6497. The scattered light of the McMath solar telescope is illustrated by several figures but not applied to the limb-effect observations. It is suggested that the supergravity shift at the limb is the result of scattering of the atoms in anisotropic velocity field.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   

6.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

7.
Axel Koch 《Solar physics》1984,93(1):53-72
The rotational velocity of the Sun is determined by sunspot tracings and by spectroscopic measurements of the photospheric plasma using the non-Zeeman-split line Fe i 5576 and absolute iodine reference. Stationary line shifts as limb-effect and longperiodical shifts introduced by supergranulation are discussed. The dependence on solar activity as Ca+ emissivity and magnetic fields is investigated including line asymmetries. The results are: (a) The non active photospheric regions rotate with 1995 ± 30 m s-1. Solar active regions yield a 60 m s-1 higher value. (b) In quiet regions the absolute limb shift varies between 170 m s-1 at the line core and 310 m s-1 at I/I cont 0.8 (C-shape); thus the limb shift is mainly due to entire line shifts. (c) In solar active regions (close to spots) asymmetries are widely reduced in line cores; this effect cannot be associated with a variation of the limb effect due to a large scatter of Doppler shifts near spots. (d) A reduced limb shift of 50 m s-1 is found in network boundaries and is mainly due to a small scale downflow. (e) Observations with a smaller influence of stray light yield symmetric profiles in umbrae. (f) Differences between umbral rotation rates from tracer and spectroscopic measurements do not exceed 20 m s-1, when considering straylight. The rotational velocity from umbrae exceeds that from the photosphere by 30–60 m s-1. Some individual spots yield nearly the same rotation rate as the photosphere.  相似文献   

8.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

9.
We report high resolution measurements of the center-to-limb variation of the Mgi line at 4571.1 Å. This forbidden line is of interest because it should be formed in LTE. Comparison of our measurements with the Harvard-Smithsonian Reference Atmosphere show that the line center radiation originates in the temperature minimum region from 330 to 550 km above the point where continuum = 1. Observations near the limb confirm that the temperature minimum is 4200K.The National Center for Atmospheric Research and Kitt Peak National Observatory are sponsored by the National Science Foundation.  相似文献   

10.
A. Wittmann 《Solar physics》1971,20(2):365-368
Magneto-optical effects on the circular polarization within the line FeI 6302.5 are investigated. Quantitative results on the V-reversal near the line centre are given for homogeneous magnetic fields.  相似文献   

11.
I ±V profiles of the Fei 5247 and 5250 lines in the 2B flare of June 16, 1989 have been analyzed. A bright knot of the flare outside the sunspot where the central intensity of H reached a peak value of 1.4 (relative to the continuum) has been explored. The Fei 5250/Fei 5247 magnetic line ratio based on the StokesV peak separations of these lines at five evolutionary phases of the flare (including the start of the flare, the flash phase, the peak and 16 min after the peak) has been analyzed. It was found that the StokesV peak separation for the Fei 5250 line was systematically larger than that of the Fei 5247 line. This is evidence for the presence in the flare of small-scale flux tubes with kG fields. The flux tube magnetic field strength was about 1.1 kG at the start of the flare and during the flash phase, 1.55 kG during the peak, and 1.38 kG 16 min after the peak. The filling factor,, appears to decrease monotonically during the flare.  相似文献   

12.
J. J. Brants 《Solar physics》1985,98(2):197-217
Scatter plots of various pairs of spectral-line parameters that describe the magnetic field and the line-of-sight velocity are discussed in order to relate magnetic structures and the line-of-sight velocity field with characteristic areas of an emerging flux region (EFR).Strong magnetic fields, occurring over about 20% of the resolution elements in the EFR, are either slightly to moderately inclined or transverse. Slightly to moderately inclined strong fields occur in patches near the border of the EFR; the filling factors per resolution element are large, and field strengths are between 800 and 2000 G, and up to 2500 G in pores. There are only a few faculae in the EFR; most of these are located near rapidly growing pores of following polarity.The strongly inclined strong magnetic fields, with field strengths exceeding 1000 G, are located in slightly darkened resolution elements near the line B = 0 separating the magnetic polarities, near large-scale and small-scale upflows. In the central region of the EFR there are some small elements with strongly inclined field of low average field strength of about 500 G, and a tendency for a small-scale upward velocity. These elements may correspond to tops of flux loops during emergence.In 80% of the resolution elements within the EFR the magnetic flux density (averaged over the resolution element) is low, less than 120 G.There is a persistent large-scale velocity field, with upflows near the line B = 0 separating the magnetic polarities and with downflows near rapidly growing pores of following polarity. Some examples of strong small-scale upflows are found in the central region of the EFR, and strong small-scale downflows near rapidly growing following pores. Within the pores and faculae there are no significant small-scale line-of-sight velocities.Based on observations obtained at the Sacramento Peak Observatory (operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation).  相似文献   

13.
The polarization structure in several spectral lines in solar type stars is computed using the method described by McKenna (1981, 1984a). The frequency redistribution function used for these calculations is a linear combination ofR II andR III. The line profiles and polarization structures have been computed for several weak solar resonance lines includingKi 7664 Å, Sri 4607 Å, Baii 4554 Å, for various polar angles along the stellar disk. Both the line profiles and polarization structures as well as the center to limb behavior of the line center polarization agree well with observations.The somewhat stronger resonance line Cai 4227 Å shows a different polarization structure when compared to the weaker solar resonance lines. It is found that for strong resonance lines the proper redistribution function to be used is a linear combination ofR III andR v (see McKenna, 1981, 1984b; Heinzel, 1981). The major reason for this is that for strong resonance lines both the upper and lower levels are broadened by collisions. This violates the assumptions upon which the redistribution functionsR II andR III are based.  相似文献   

14.
The center-to-limb behaviour of the Ba ii 4554 resonance line is analyzed together with data from the extreme limb, flash intensities and profiles of other Ba ii lines. An empirical NLTE method is employed in which the observed profiles are compared with synthesized profiles based on a standard one-dimensional model atmosphere, with the line source function, the barium abundance, the collisional damping and the atmospheric turbulence as free parameters.The line profiles from the extreme limb furnish considerable constraints on the formation of Ba ii 4554. Its wings reverse into emission well inside the solar limb, a phenomenon which cannot be explained by any frequency-independent line source function. Accounting for effects of partially coherent scattering in the line source function is a necessary and adequate step to reproduce the observations both over the disk and near the limb. The form of the empirically derived frequency-dependent line source function is discussed.Results are given for various parameters (gf-values, solar barium abundance and isotope ratios, collisional damping, microturbulence and macroturbulence).The 4554 profile of disk center shows a depression in its blue wing resembling asymetries found in various stellar spectral lines.  相似文献   

15.
We have examined seven active regions of the Skylab period in the EUV (Harvard College Observatory), and in H and K3 (Observatoire de Meudon, spectroheliograms and patrols) in order to elucidate the magnetic geometry in the coronal environment of filaments. We have also looked for signatures of magnetic reconfigurations associated with instabilities (i.e. velocities or disappearances) of filaments. Out of sixteen H filaments observed, six were stable (lifetime 48h). All the filaments lay within coronal cavities as seen in lines formed above 1.5 × 106 K (Mgx 625, Sixii 521, Fexvi 417, Fexv 361). None of the stable filaments had arcades or arches spanning the cavities except (sometimes) at the ends of the filaments. On the other hand, most (8/10) of the unstable filaments (having concurrent Doppler shifts or a subsequent DB within 24h) had arcades or single arches spanning their cavities. The arches were observed in EUV lines with formation temperatures as low as 2–4 × 105 K (Oiv 554, Ovi 1032, Ne vii 465), as well as in hotter lines. A statistical test shows that the arcade/instability vs non-arcade/stability association is significant at the 99% confidence level. We suggest 2 types of scenario relating arcades to instabilities. The more preferable scenario is closely related to the Kuperus/Van Tend model of filament disruptions.  相似文献   

16.
The location of H filaments is compared with maps of the photospheric line of sight velocity V and the magnetic field H . It is found that (1) H filaments are associated with regions of ¦V ¦ 300m s–1, (2) always both positive as well as negative velocities are present under H structures, (3) stable (long lasting) portion of filaments frequently occur at the position of H = 0 as well as V = 0 lines, (4) this association remains valid for the longitudes less than 50° from central meridian.  相似文献   

17.
Stokes I and V line profiles with high signal-to-noise ratio of the 1 Fei 5247.06 and 5250.22 Å lines have been recorded in a number of regions with different amount of magnetic flux near disc center, from non-magnetic regions to strong plages. The objective has been to study how the intrinsic fluxtube properties may depend on the amount of flux concentration, i.e., on the magnetic area factor. Indirectly, the area factor should be related to the average fluxtube diameter.The intrinsic kG field strength is found to vary only slowly, by at most a few hundred G, when the area factor increases by a factor of 6. The statistical spread in the values is quite small.The wavelength positions of the V profiles do not indicate any downdrafts within the fluxtubes. The well-known association of redward line shifts and magnetic features probably arises from motions in the field-free region adjacent to the fluxtubes. There are strong asymmetries of the Stokes V profile always in the sense of a 20–30% stronger blue peak, which indicate that there must be important mass motions with a vertical gradient within the fluxtubes.Most of the recordings have been made with a grating spectrometer, but two recordings with a Fourier transform spectrometer have provided an important check of the instrumental effects of limited spectral resolution and straylight in the spectrometer data. These effects modify the I and V profiles substantially, and can for instance result in fictitious redshifts derived from the Stokes V profiles.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

18.
Mean density models of the solar corona show evidence for two distinctive density regimes characterized by different density gradients. High density gradients are identified with regions of predominantly open magnetic lines of force and low density gradients are identified with regions of predominantly closed magnetic lines of force. Spectroscopic data yielding equivalent widths of forbidden lines of Fe x and Fe xiv strongly suggest that the coronal temperature for r > 2.5 R decreases considerably less rapidly in equatorial regions than r –2/7, which is the decrease predicted by conduction models with open field lines.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
We have used the SPO tower telescope and echelle spectrograph to study differences in the profiles of three Fei lines, between magnetic network and cells. Ca K slit-jaw pictures were used to identify the network and cell areas, and mean network and cell profiles were computed from digitized spectra for the g = 0 lines 4065, 5434, and the g = 1.5 line 5233. The profile bisectors show that the wings of all three lines are red-shifted in the network by between 75–200 m s–1 relative to the cell profiles. But the redshift decreases in the line core and becomes less than the standard error of 20 m s–1 near the line core minimum. This disappearance of the redshift at the cores of all 3 lines formed over the height range 250–500 km above 0.5 = 1, argues against a steady downflow at supergranule boundaries. We show that such red-shifted wings and a relatively unshifted core can result if granular convection is suppressed near the network flux tubes, without implying any downflow in the vicinity of these flux tubes. Our results also indicate that searches for large-scale convective velocity patterns should measure shifts of the line core, rather than the line wings which appear to be very sensitive to inhomogeneities in granule structure.Visiting Astronomers, Sacramento Peak Observatory.  相似文献   

20.
Observations are presented of emission line resonance polarization in Fe xiii 10747 at the total solar eclipse of 12 November 1966. Useful data, with angular resolution 15, describe three quadrants of the corona from 1.08 R to a maximum of 1.6 R . The direction of the electric vector of observed polarization is perpendicular to the solar limb, to the limits of accuracy of measurement, in at least 74% of all cases. Departures in the other points are consistent with the magnetic depolarization expected from the non-radial fields of streamers. Polarizations observed range from near zero at the limb to 80 % and higher at 1.6 R . Averaged polarization is highest in non-streamer regions, where above 1.2 R it suggests pure radiative excitation of the 10747 line. Below 1.2 R , and in a dense streamer, the polarization is significantly depressed, indicating dominant collisional excitation of the line wherever the electron density exceeds 50 × 106 cm–3.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号