首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Xiaolei  Liu  Fulai  Li  Junyong  Wang  Di 《中国科学:地球科学(英文版)》2020,63(12):2068-2086
Science China Earth Sciences - The regime of plate tectonics on early Earth is one of the fundamental problems in Earth sciences. Precambrian era takes the majority (ca. 88%) of Earth’s...  相似文献   

2.
Examination of the shape of the midcontinent gravity high of central North America has led to the hypothesis that the Keweenawan rift system that caused it is the result of plate tectonic interaction. A numerical test has been carried out on the width and postulated transform fault offsets of the gravity high. The exactness of fit to a plate tectonic geometry implies that the continental lithosphere behaved as rigid plates during the Late Precambrian, about 1.1 by ago. This exactness of fit also suggests that the total amount of separation on the Keweenawan rifts is equal to the width of the gravity high. Gravity modelling studies bear out the plausibility of a major amount of rifting, up to 90 km under central Lake Superior. The midcontinent gravity high may represent an intermediate stage of continental rifting, since similar gravity highs and strong associated magnetic anomalies are found on the modern rifted margins of the Atlantic Ocean.  相似文献   

3.
Climatic and environmental conditions play a pivotal role in the evolution of the biosphere, serving as the primary natural factors influencing biological evolution and the development of human civilization. The study of the evolution of Earth’s habitability primarily revolves around the reconstruction of climatic and oceanic conditions in geohistorical periods, shedding light on their dynamic changes. This paper collates classic geological indicators and geochemical proxies associated with pale...  相似文献   

4.
5.
天山造山带南北分别于塔里木盆地和准噶尔盆地相接,经历古生代时期超级大陆裂解、南北天山洋裂开、洋盆持续扩张、洋壳俯冲消减、陆陆碰撞缝合过程及中新生代陆内再造山构造调整,是现今世界上较为活跃的陆内造山带,成为国内外大陆动力学研究的热点地带.在综合分析地质学、地球物理(地震剖面、重力异常、地震层析)、地球化学、岩石学及天文学...  相似文献   

6.
Seismic provinces in Peru and northern Chile may be defined in direct relation to the geometry of parts of Nazca plate that are being subducted under the Americas plate. Recent tectonism and calc-alkaline volcanism appear also to have a clear relationship to that same geometry of the subducted slab. Under northern and central Peru, the slab plunges at 10–15° to the northeast, and becomes almost horizontal farther east; at surface in the same region, recent calc-alkaline volcanism is absent and recent tectonics are mostly compressional. Under southern Peru and northern Chile, the slab plunges regularly at about 30° to the east; at the surface, calc-alkaline volcanism is still active and recent tectonism appears to be mostly extensional.  相似文献   

7.
The continental margin off the Makran coast of Iran and Pakistan is an excellent example of active deformation of sediments at a compressive plate boundary. Seismic reflection profiles across the margin suggest that relatively flat-lying sediments from the Oman abyssal plain are being scraped off the Arabian plate and accreted onto the Eurasian plate in a series of tightly folded sediment ridges aligned parallel to the coast. The most active folding appears to be occurring in the southernmost of the ridges, where it has formed a frontal fold up to 750 m high, with a width of 3–4 km. Filling of the basins between the ridges with later sediment becomes progressively more complete towards the north, and produces a smooth continental shelf near the coast, where the ridges are completely buried by sediment. Evidence for the possible presence of northward-dipping thrust faults which uplift the ridges towards the coast is seen in the consistent back-tilting of the sediments in the inter-fold basins.Below the abyssal plain to the south of the folded zone the sediments are divided by a prominent reflector, horizon A, into an upper group of flat-lying beds that overlie strata which dip gently to the north. A sharp velocity increase occurs across this horizon. The deepest observable reflector, horizon B, is seen as a series of diffraction hyperbolae which dip conformably northwards at about 1°. Velocity determinations from refraction and variable-angle reflection stations over the abyssal plain indicate a thick pile of low-velocity material which is probably sediment lying above horizon B. The material directly below horizon B has a velocity of 4.5 ± 0.2km/s and is probably volcanic in origin.  相似文献   

8.
Geophysical arguments against plate tectonics in a hotter Earth, based on buoyancy considerations, require an alternative means of cooling the planet from its original hot state to the present situation. Such an alternative could be extensive flood volcanism in a more stagnant-lid like setting. Starting from the notion that all heat output of the Earth is through its surface, we have constructed two parametric models to evaluate the cooling characteristics of these two mechanisms: plate tectonics and basalt extrusion/flood volcanism. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate of operation comparable to or even lower than its current rate of operation, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates, and as a result may have cooled without an additional cooling mechanism. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.  相似文献   

9.
Three basic tectonic units, the Eurasian continent, the Rigid Boundary Zone and the Indian continent, are recognized. The Rigid Boundary Zone is identified with aseismic lineaments on an epicenter map of the Himalayas and their vicinity. The origin of the Himalayan syntaxes, their re-entrant character, and the observation that most of the Himalayas are made up of rocks belonging geologically to the Indian peninsular shield, are explained by deformation of the Indian continent within this Rigid Boundary Zone since the continental collision. The focal mechanism solutions of six earthquakes in the Indian Peninsula support the inference derived from the model that the high stresses generated by the continental collision may be very extensive spatially, and that the entire Indian Peninsula may be under a state of left lateral shear along NNE vertical planes.  相似文献   

10.
Seismic gaps and plate tectonics: Seismic potential for major boundaries   总被引:5,自引:0,他引:5  
The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long- and short-term seismic quiescence are used in this paper to delineate major seismic gaps.In detail, however, the distribution of large shallow earthquakes along convergent plate margins is not always consistent with a simple model derived from plate tectonics. Certain plate boundaries, for example, appear in the long term to be nearly aseismic with respect to large earthquakes. The identification of specific tectonic regimes, as defined by dip of the inclined seismic zone, the presence or absence of aseismic ridges and seamounts on the downgoing lithospheric plate, the age contrast between the overthrust and underthrust plates, and the presence or absence of back-arc spreading, have led to a refinement in the application of plate tectonic theory to the evaluation of seismic potential.The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best.The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These categories range from what we consider high to low potential for being the site of large earthquakes during that period of time. Categories 1, 2 and 6 define a time-dependent potential based on the amount of time elapsed since the last large earthquake. The remaining categories, 3, 4, and 5, are used for areas that have ambiguous histories for large earthquakes; their seismic potential is inferred from various tectonic criteria. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified.Several of the segments of major plate boundaries that are assigned the highest potential, i.e., category 1, are located along continental margins, adjacent to centers of population. Some of them are hundreds of kilometers long. High priority should be given to instrumenting and studying several of these major seismic gaps since many are now poorly instrumented. The categories of potential assigned here provide a rationale for assigning prorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.Lamont-Doherty Geological Observatory Contribution No. 2906.  相似文献   

11.
A model is developed that unifies vigorous hotspots with global-scale mantle convection and plate tectonics. The convection dynamics are assumed to generate flow patterns that emerge as closely packed polygonal cells in approaching the asthenosphere, and whose geometry is completely determined by a defining set of vigorous hotspots. Overlying viscously coupled rigid plates are driven with unique velocities (Euler vectors) at which the area integral of the shear forces is zero; these velocities are dynamically stable. The computed plate velocities, resulting from convection based on 15 hotspots, are compared with the velocities of plate motion models AM1-2 (Minster andJordan, 1978) and HS-NUVEL1 (Gripp andGordon, 1990), which combine transform fault geometries, magnetic anomalies and seismic data. The comparison shows a striking agreement for a majority of the plates. Geophysical implications of this numerical exercise are discussed.  相似文献   

12.
A number of geothermal fields explored so far in the circum-Pacific area occur along spreading ridges and subduction zones in areas of young tectonism and volcanism. A preliminary analysis, however, suggests that these geothermal fields are not situated along entire segments of plate boundaries but only at certain locations. In convergent zones these locations are (i) near the ends of plate boundary segments or (ii) in transverse zones that divide plates into several blocks 100–1000 km long. The locations of geothermal fields therefore appear to be influenced by plate geometry and correspond to lateral breaks in the continuity of the underthrusting plate.  相似文献   

13.
On the basis of the third generation map of the magnetic lineations of the world’s ocean basins (Cande et al., 1989), a systematic element division is made for the accretion tectonics of the world’s seafloor by use of the conception of accretion area and accretion period. This work reveals the evolution process of the seafloor, which is divided into 49 accretion areas and 6 accretion periods. It is found that the latter accretion processes play reform roles such as splitting and wedging action to the former. From the viewpoint of the whole it seems that the accretion process of the seafloor is characterized by the global episodic synchroneity and strong heterogeneity in spatial distribution as well as the local discontinuity.  相似文献   

14.
The Tethys orogenic belt in SW Yunnan constitutes a critical part of the expansive Tethys-Himalayan tectonic domain. The abundant, well-preserved geologic records make it an ideal area for studying the tectonic evolution of Proto-and Paleo-Tethys. In this paper, we focus on several major tectonic units in SW Yunnan and reconstruct the Tethyan evolution from the early Paleozoic to the early Mesozoic, based on stratigraphic, sedimentologic, and magmatic evidences. The recently discovered early Pal...  相似文献   

15.
<正>Granites are a common type of felsic intrusive rock that are composed of quartz,feldspar and micas as rock-forming minerals.They are the final products of the high-temperature,magmatic,predominantly endogenic,chemical differentiation of the earth(Clarke,1996).As the most abundant plutonic rocks in the continental crust,granites may form in various tectonic settings such as marginal arc,collisional orogen and intraplate rifting(Barbarin,1999).Granites are widespread in fossil orogens of China,through Archean to Cenozoic in time.In keeping with the general  相似文献   

16.
Understanding changes in Earth’s past can provide valuable insights into prediction of its future. An example is the interactions between the internal and external spheres of Earth. The cyclical northward breakup-drift of Gondwana, driven by the opening and closure of Proto-, Paleo-, and Neo-Tethyan oceans, facilitated the transfer of landmasses from the southern to the northern hemisphere, traversing the tropic region. We have observed a compelling correlation between episodic increases in land...  相似文献   

17.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
If wind-stress or a horizontal oceanic density gradient acts over an ocean basin with an adjacent continental shelf and slope, sea-surface slopes and currents are set up along the shelf and slope with a return flow in the ocean. The currents evolve from zero at blocked ends of the shelf and basin. Such evolution is essentially barotropic (even for baroclinic forcing) and is relevant to all flow adjustments after longshore changes of depth profile or forcing. The distance over which this evolution takes place is investigated analytically for simple geometries, and numerically for a range of shelf, slope and ocean widths, shelf/ocean depth ratios, frictional decay rates and oscillatory frequencies. A close correspondence is found with the decay distance (group velocity x decay time) for a lowest mode continental shelf wave, often exceeding 1000 km. This correspondence is used to interpret some published model calculations of shelf and slope currents or return flows resulting from wind-stress or alongshore pressure gradients.Where a slope current is evolving, coastal sea levels do not follow oceanic levels. Implications for coastal/oceanic level differences are discussed. Oceanic sea-level features of shorter scale than the above 1000 km (say) do not penetrate fully to the coast. However, coastal sea levels averaged around small islands without broad shelves well represent surrounding oceanic levels.  相似文献   

19.
Andesites of both island arc and continental margin environments contain petrologic evidence of mixing of mantle and crustal melts. Andesitic volcanism appears to involve addition of mantle-derived basaltic magma to the crust and fractionation of preexisting crustal material. Changes in andesitic volcanism with increasingly continental character of the crust reflect changes in a rhyolitic component derived from increasingly aged and fractionated crust. The initial stage in development of continental crust is partial melting of oceanic crust.  相似文献   

20.
Nobuhiko  Nakano  Yasuhito  Osanai  Masaaki  Owada  Yasutaka  Hayasaka  Tran Ngoc  Nam 《Island Arc》2009,18(1):126-143
The Kontum Massif in central Vietnam is composed of various metamorphic complexes including a high-temperature southern part (Kannak and Ngoc Linh complexes) and a low- to medium-temperature northern part (Kham Duc complex). The Kham Duc complex exhibits Barrovian-type medium-pressure metamorphism evidenced by kyanite- and/or staurolite-bearing metapelites. The garnet–gedrite–kyanite gneiss, which is the focus of the present study, preserves several mineral parageneses formed during a prograde and retrograde metamorphic history: staurolite + quartz in gedrite, garnet + gedrite + kyanite in the matrix, and spinel + cordierite symplectite between gedrite and sillimanite. The calculated semiquantitative petrogenetic grid reveals peak pressure conditions of 620–650°C at 1.1–1.2 GPa and peak temperature conditions of 730–750°C at 0.7–0.8 GPa. The monazite U–Th–Pb electron microprobe ages of the garnet–gedrite–kyanite gneiss and associated gneisses yield 246 ± 3 Ma for the Kham Duc complex, which is similar to the age of the high- to ultrahigh-temperature metamorphism in the adjacent Kannak and Ngoc Linh complexes of the southern Kontum Massif. The present results indicate that both the Barrovian-type and ultrahigh-temperature metamorphism occurred simultaneously in the Kontum Massif during an event strongly related to Permo–Triassic microcontinental collision tectonics in Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号