首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
耿煜  王君恒 《地球物理学报》2015,58(10):3530-3539
地球形成初期,构成地球的物质在组成上是大致均一的.目前地球的地核-地幔-地壳圈层结构,是由分异作用形成的.分异过程释放的能量称为分异能.Sorokhtin和Chilingarian等人从行星吸积的定义出发,导出了基于地球内部密度分布的势能计算公式,计算出的分异能大小为1.698×1031J.本文采用计算球体势能的思路,导出分异能计算的解析公式和数值计算公式,通过求取原始地球模型与均匀分层模型、PREM模型的势能差计算分异能.两种方法的计算结果分别为1.535×1031J和1.698×1031J.前者与Sorokhtin等的结果相近,后者与之相同.本文初步分析了方法间的异同以及造成结果偏差的主要原因.  相似文献   

2.
SmNd isotopic data for mineral separates from the ferroan anorthosite 60025 define a precise isochron of 4.44 ± 0.02Ga age. This age is roughly 110 m.y. younger than the formation of the first large solid objects in the solar nebula, as recorded by the radiometric ages of the differentiated meteorites. In the magma ocean model for early lunar differentiation, ferroan anorthosites are the first crustal rocks to form on the Moon. If the Moon is as old as the oldest meteorites, the relatively young age determined for 60025 implies either that the magma ocean did not form synchronously with lunar formation, or that the magma ocean required over 100 m.y. before reaching the stage of ferroan anorthosite crystallization. Alternatively, we propose that the accumulated body of radiogenic isotope data for lunar rocks permit the Moon to be as young as 4.44–4.51 Ga. If so, isotopic evidence for chemical differentiation on the Earth at about this same time suggests that the formation of the Moon is reflected in the chemical evolution of the Earth. This, in turn, is consistent with the idea that the materials that now make up the Moon were derived from the Earth, perhaps ejected by collision between the Earth and another very large planetesimal during the final stages of accumulation of the terrestrial planets. Terrestrial origin models for the Moon lessen the requirement that the Earth and Moon each have near chondritic relative abundances of the refractory elements and could require that certain chemical and isotopic characteristics of both bodies be considered in the framework of the chemical mass-balance of the combined Earth-Moon system.  相似文献   

3.
地球扁率在地质历史上的变化下限   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究地球形状的长期变化,将地球假设为弹性椭球体,根据弹性动力学理论导出地球的扁率下限公式,扁率与地球的平均密度ρ、引力加速度g、自转角速度ω、平均半径R、弹性模量E、泊松比v相关.将新星云假说下地质历史时期半径、质量和角速度变化值代入公式计算出各地质历史时期地球扁率值,作为地球扁率变化值的下限值.地球的扁率自地球形成以来总体变化趋势是在减小.  相似文献   

4.
The thermochemical model of the authors is shown to be naturally related to the general theory of V.P. Myasnikov. A heterogeneous modification of this homogeneous theory is described in light of the present ideas on the differentiation of the mantle substance at the boundary with the core and its eclogitization during submersion from the outer boundary and at the endothermic phase transition at a depth of 670 km. The Earth’ls evolution from an initial hot state is numerically modeled. The evolution is shown to start with an abrupt mantle overturn followed by a long period of steady evolution. Global mantle overturns recur a few times, gradually weaken, and are transformed into regional avalanches. The spatial configuration of overturns is represented by a predominant funnel-shaped sink and a few (three to five) ascending superplumes, which convincingly explains the causes of the formation of supercontinents, the opening of oceans, and the observed asymmetry of the planet. The times of overturns remarkably correlate with geological data on the existence of supercontinents. The processes of core growth, mantle cooling, and crust formation exhibit a clearly expressed stepwise behavior. The supplementation of the endothermic phase transition by chemical transformations favors the overcoming of the phase barrier between the upper and lower mantle, enhances the nonlinearity of mantle convection, and imparts a heterocyclic pattern to the process of evolution. It is shown that the lower mantle plume of chemical origin is fragmented by the phase transition into parts that, interacting with the thermal convection, generate a system of upper mantle plumes. This modeling provides an explanation of the coeval systems of oceanic plateaus and continental traps observed on the surface.  相似文献   

5.
The formation and evolution of permafrost in China during the last 20 ka were reconstructed on the basis of large amount of paleo-permafrost remains and paleo-periglacial evidence, as well as paleo-glacial landforms, paleo-flora and paleofauna records. The results indicate that, during the local Last Glacial Maximum(LLGM) or local Last Permafrost Maximum(LLPMax), the extent of permafrost of China reached 5.3×106-5.4×106 km2, or thrice that of today, but permafrost shrank to only0.80×106-0.85×106 km2, or 50% that of present, during the local Holocene Megathermal Period(LHMP), or the local Last Permafrost Minimum(LLPMin). On the basis of the dating of periglacial remains and their distributive features, the extent of permafrost in China was delineated for the two periods of LLGM(LLPMax) and LHMP(LLPMin), and the evolution of permafrost in China was divided into seven periods as follows:(1) LLGM in Late Pleistocene(ca. 20000 to 13000-10800 a BP)with extensive evidence for the presence of intensive ice-wedge expansion for outlining its LLPMax extent;(2) A period of dramatically changing climate during the early Holocene(10800 to 8500-7000 a BP) when permafrost remained relatively stable but with a general trend of shrinking areal extent;(3) The LHMP in the Mid-Holocene(8500-7000 to 4000-3000 a BP)when permafrost degraded intensively and extensively, and shrank to the LLPMin;(4) Neoglaciation during the late Holocene(4000-3000 to 1000 a BP, when permafrost again expanded;(5) Medieval Warming Period(MWP) in the late Holocene(1000-500 a BP) when permafrost was in a relative decline;(6) Little Ice Age(LIA) in the late Holocene(500-100 a BP), when permafrost relatively expanded, and;(7) Recent warming(during the 20 th century), when permafrost continuously degraded and still is degrading. The paleo-climate, geography and paleopermafrost extents and other features were reconstructed for each of these seven periods.  相似文献   

6.
As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology,geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event(GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.  相似文献   

7.
高精度地球物理学是创新未来的必然发展轨迹   总被引:1,自引:0,他引:1  
滕吉文 《地球物理学报》2021,64(4):1131-1144
地球物理学在整个地球科学研究与探索中占有重要地位,突破该领域以描述、推断为主体的框架,并逐步向量化或半量化前进确为必然.地球物理学逐步向高精度升华乃深化理解各有关科学问题的时代需求.基于物理学概念,从定义出发促使多学科交叉和不断创新,是地球物理学能否抢占地球科学制高点的核心所在.为此,真正意义上的高精度观测、高分辨率的数据采集和精细结构的刻画构成了高精度地球物理学的基石,是深化理解地球科学中有关壳幔形成、演化问题的深层次的内核.本文通过较系统地分析和研究提出,(1)地球科学研究进程中的定性描述和依据于浅表层过程与现象的推断有待突破;(2)夯实与把握基础科学理论是高精度地球物理学捕获真谛的“钥匙”;(3)高精度地球物理学是深化认识地球本体和逼近彼岸的基石.  相似文献   

8.
Thermal and chemical evolution of the terrestrial magma ocean   总被引:8,自引:0,他引:8  
The Earth is likely to have experienced a magma ocean stage during accretion. Thermal and chemical evolution of magma ocean is investigated based on a one-dimensional two-phase-flow heat and mass transfer model. Differentiation at lower mantle pressure depends on the type of magma ocean and surrounding atmosphere. If the magma ocean is formed by the blanketing effect of a solar-type proto-atmosphere, extensive differentiation proceeds at lower mantle pressure. If the magma ocean is formed by the blanketing effect of an impact-induced steam atmosphere, no differentiation at lower mantle pressure is likely. If a very deep magma ocean is formed by a giant impact, whether differentiation proceeds at lower mantle pressure or not depends on grain size, viscosity of melt and/or properties of a transient atmosphere. On the contrary, chemical differentiation likely proceeds at upper mantle pressure irrespective of magma ocean type. A shallow magma ocean can remain for 100 200 My without any heating processes.  相似文献   

9.
10.
Formation,history and energetics of cores in the terrestrial planets   总被引:1,自引:0,他引:1  
The cores of the terrestrial planets Earth, Moon, Mercury, Venus and Mars differ substantially in size and in history. Though no planet other than the Earth has a conclusively demonstrated core, the probable cores in Mercury and Mars and Earth's core show a decrease in relative core size with solar distance. The Moon does not fit this sequence and Venus may not. Core formation must have been early (prior to ~4 · 109 yr. ago) in the Earth, by virtue of the existence of ancient rock units and ancient paleomagnetism and from UPb partitioning arguments, and in Mercury, because the consequences of core infall would have included extensional tectonic features which are not observed even on Mercury's oldest terrain. If a small core exists in the Moon, still an open question, completion of core formation may be placed several hundred million years after the end of heavy bombardment on tectonic and thermal grounds. Core formation time on Mars is loosely constrained, but may have been substantially later than for the other terrestrial planets. The magnitude and extent of early heating to drive global differentiation appear to have decreased with distance from the sun for at least the smaller bodies Mercury, Moon and Mars.Energy sources to maintain a molten state and to fuel convection and magnetic dynamos in the cores of the terrestrial planets include principally gravitational energy, heat of fusion, and long-lived radioactivity. The gravitational energy of core infall is quantifiable and substantial for all bodies but the Moon, but was likely spent too early in the history of most planets to prove a significant residual heat source to drive a present dynamo. The energy from inner core freezing in the Earth and in Mercury is at best marginally able to match even the conductive heat loss along an outer core adiabat. Radioactive decay in the core offers an attractive but unproven energy source to maintain core convection.  相似文献   

11.
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.  相似文献   

12.
Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utilization of solar energy in large scale by life was an important breaking point of the early evolution of life on Earth and afterwards life gradually developed and flourished.However,in the widespread biochemical electron transfer of life activities,it is still not clear whether the electron source is sun or how electrons originated from sun.For billions of years,the ubiquitous semiconducting minerals in epigeosphere absorb solar energy,forming photoelectrons and photoholes.In reductive and weak acidic environment of early Earth,when photoholes were easily scavenged by reducing matters,photoelectrons were separated.Photoelectrons could effectively reduce carbon dioxide to organic matters,possibly providing organic matter foundation for the origin of life.Photoelectrons participated in photoelectron transfer chains driven by potential difference and transfer into primitive cells to maintain metabolisms.Semiconducting minerals,by absorbing ultraviolet,also protected primitive cells from being damaged by ultraviolet in the origin of life.Due to the continuous photoelectrons generation in semiconducting minerals and utilization by primitive cells,photoelectrons from semiconducting minerals’photocatalysis played multiple roles in the origin of life on early Earth,such as organic synthesis,cell protection,and energy supply.This mechanism still plays important roles in modern Earth surface systems.  相似文献   

13.
地震的孕育、发生和发展是地球介质内微裂纹系演化的动力过程,包括线性成扩展阶段和临界增长阶段,后一阶段涉及到裂纹系的非线性增长与涨落耗散,并当达到某个临界点时,即开始单一裂纹的支配过程而发生地震。  相似文献   

14.
底辟流是研究地球内部物质循环与迁移的重要窗口,其动力学演化过程对于我们认识区域地质构造与演化具有重要意义.本文从热-结构力学的角度,建立三组不同的数值模型,研究底辟流上涌的动力学过程,分析底辟流半径、热-结构耦合、岩浆上涌通道对底辟流上涌过程的影响.该研究对认识早古生代祁连弧的形成过程具有重要启示.数值实验结果表明,底辟流半径越大底辟上涌速度越快;单个底辟很难直接上涌至上地壳底部,柴达木北缘超高压变质带和岩浆弧可能是由于多个底辟流持续上涌,最终发育稳定岩浆通道形成的,并且岩浆通道的形成对于超高压变质岩石的减压时间以及岩浆弧的形成时间均具有重要影响;具有稳定岩浆通道的单个底辟流从地幔深处90 km上涌至壳幔边界的过程中,在水平方向的侵蚀范围要比垂向侵蚀范围大一倍左右,研究结果表明安第斯型底辟流模型可以很好地描述早古生代柴达木北缘祁连弧的形成过程.  相似文献   

15.
The dependence of the intensity of geomagnetic field on the intensity of thermal convection in the liquid core of the Earth, which has been empirically derived by a number of the authors from the results of numerical modeling of convective dynamo, is substantiated theoretically. This dependence is used for estimating the characteristic time scale of jerk evolution.  相似文献   

16.
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively “young” Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth’s internal structure, such as the age of the Earth’s solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth’s inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth’s core. The data are consistent with very young or very “old” inner core ages and, correspondingly, with high or low values of core thermal conductivity.  相似文献   

17.
Assemblages of evaporite minerals record detailed physical and chemical characteristics of ancient surficial environments. Accordingly, newly discovered regions of saline minerals on Mars are high priority targets for exploration. The chemical divide concept of evaporite mineral formation is used successfully to predict evaporite mineralogy and brine evolution on Earth. However, basaltic weathering largely controls fluid compositions on Mars and the robust predictive capabilities of terrestrial chemical divides cannot be used to interpret Martian evaporites. Here we present a new chemical divide system that predicts evaporite assemblages identified in SNC-type meteorites, ancient evaporites discovered on Meridiani Planum by the Opportunity rover, and Mars Express OMEGA data. We suggest that a common fluid type that has been buffered to different pH levels by basaltic weathering controls the variability among Martian evaporite assemblages and that evaporite mineralogy and brine evolution is essentially established by the initial composition of the dilute evaporating fluid.  相似文献   

18.
It is not possible to consider the formation of the Earth in isolation without reference to the formation of the rest of the solar system. A brief account is given of the current scientific consensus on that topic, explaining the origin of an inner solar system rocky planet depleted in most of the gaseous and icy components of the original solar nebula. Volatile element depletion occurred at a very early stage in the nebula, and was probably responsible for the formation of Jupiter before that of the inner planets. The Earth formed subsequently from accumulation of a hierarchy of planetesimals. Evidence of these remains in the ancient cratered surfaces and the obliquities (tilts) of most planets. Earth melting occurred during this process, as well as from the giant Moon-forming impact. The strange density and chemistry of the Moon are consistent with an origin from the mantle of the impactor. Core-mantle separation on the Earth was coeval with accretion. Some speculations are given on the origin of the hydrosphere.  相似文献   

19.
The average concentrations of 19 siderophile and volatile elements in shergottite meteorites differ from those in terrestrial basalts by less than a factor of ten. This observation undermines claims that the abundances of siderophile and volatile elements in the Earth's upper mantle are uniquely terrestrial. Claims that similarities in the Moon's siderophile element pattern imply a terrestrial origin for the Moon are also weakened. The implication that basalt source regions on the asteroidal parent body of the shergottites resembled the terrestrial upper mantle constrains models of planetary formation and evolution. Heterogeneous accretion models may explain many of the similarities between these planets. Alternatively, separation of sulfide from basaltic magmas or their source regions on the Earth and the shergottite parent body may explain some of these similarities.  相似文献   

20.
Izvestiya, Physics of the Solid Earth - Abstract—A review is presented of the state-of-the-art publications concerning the nucleation and evolution of fault slip in the Earth’s crust....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号