首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Within the frameworks of the presented model, the beginning of the spring and autumn hydrological seasons depends on the temperature regime of air flows in the region under investigation. As compared with the standard procedure of season determination, this model is more flexible in taking account of the probabilistic nature of the time of the beginning of hydrological seasons and variations of their duration. It ensures a higher reliability of estimates of thermal surface water properties and analysis of their evolution within the seasons and annual cycles. A considerable irregularity in the time of the beginning of spring and autumn seasons and a possibility of significant fluctuations of their duration changes the estimation of thermal surface water conditions so considerably that the initial (calendar) model can be no longer considered as the source of reliable information.  相似文献   

2.
With a baroclinic prognostic model of sea dynamics, the annual cycle of the Black Sea hydrological regime is modeled for constantly changing atmospheric circulation types characteristic of the Black Sea. Emphasis is placed on the hydrological structure of the upper sea layer in two extreme meteorological situations, storm and near-calm conditions over the sea basin. A significant difference is found in the character of the sea currents, and the main sea circulation features are determined for such situations. The system of model equations is solved using a method of two-cycle splitting on a grid with a 5-km horizontal step and 32 levels in the vertical.  相似文献   

3.
In this study, long-term change of wind characteristics on the Black Sea has been investigated using two widely used data sources, i.e., European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and National Centers for Environmental Prediction/Climate Forecast System Reanalysis (NCEP/CFSR), spanning 40 years between 1979 and 2018. Spatial and seasonal variability of climatic features such as the wind speed, direction, number and duration of storms, and wind power density are discussed. Wind climate is characterized by strong, durable and stable winds in the northern and western Black Sea, and relatively weak, short-lived and highly-variable winds in the eastern Black Sea. These long-term wind patterns indicate that the eastern part of the basin is likely to be subjected to the impacts of climate change. Long-term stable and strong wind conditions in the southwest part indicate reliable, persistent and sustainable wind energy potential. Long-term and seasonal variation of wind power density (WPD) at 110 m altitude over the Black Sea is investigated. There is a significant difference in WPD values between winter and summer seasons, with around 2.8 times larger WPD in winter than that in summer. In the western Black Sea, narrow confidence intervals observed in each season indicate a low level of variation during a season and ensures stable wind power conditions.  相似文献   

4.
The regional features oflong-term variability ofsea surface temperature (SST) in the Black Sea are analyzed using the satellite data for 1982-2014. It is demonstrated that the maximum intraannual and interannual variability of SST is registered on the northwestern shelf of the Black Sea. The high level of interannual variability of SST and maximum linear trends are observed in the northeastern part of the sea. The qualitative connection is revealed between the long-term variability of SST and the variations in the intensity of the Black Sea Rim Current in the long-term seasonal cycle. An increase in the level of interannual variability of SST is observed in summer, when the Black Sea Rim Current weakens. The significant negative correlation is revealed between the interannual anomalies of SST and the NAO index. The highest correlation coefficients are obtained for the eastern part of the Black Sea and near the Crimean coast.  相似文献   

5.
中国东部降水的气候模态及雨季划分   总被引:1,自引:1,他引:0       下载免费PDF全文
应用中国东部地面观测气候平均候降水量数据和谐波分析方法,研究了华南、长江中下游、淮河流域、华北四个区域降水的年变化特征,特别是夏季风降水的阶段性和区域特征,并对构成降水年变化的气候分量进行分析,将各区降水年变化分解为年循环模态、季节模态、季节内振荡和月内振荡四个气候模态。结果表明:不同模态间的相互调制对降水的阶段性和区域性具有重要影响,年循环是影响雨季的主要模态,季节和季节内振荡模态对决定主汛期起重要作用。基于气候模态划分中国东部雨季和主汛期,方法简单,结果客观合理。  相似文献   

6.
The transboundary Sesan and Srepok sub-basins (2S) are the “hot-spot” areas for reservoir development in the Lower Mekong region, with 12 reservoirs built in the Vietnam territory. This study examines the impacts of reservoir operations in Vietnam and projected climate change on the downstream hydrologic regime of the 2S Rivers by jointly applying the Soil Water Assessment Tool (SWAT) and Water Evaluation and Planning (WEAP) models. Different scenarios of reservoir operation are considered and simulated to assess their impact on annual, seasonal, and monthly flow regimes under maximum hydropower capacity generation with and without taking into account the minimum flow requirement downstream near the Vietnam border with Cambodia. The precipitation and temperature projections from the high-resolution regional climate model HadGEM3-RA under two Representative Concentration Pathways, 4.5 and 8.5, of HadGEM2-AO are used as future climate change scenarios for the impact assessment. The study results show that reservoir operation leads to an increase in the dry season stream flows and a decrease in the wet season stream flows. The monthly flow regime exhibits considerable changes for both the Sesan and Srepok Rivers but with different magnitudes and patterns of increase and decrease. Climate change is likely to induce considerable changes in stream flows, though these changes are comparatively lower than those caused by reservoir operation. Climate change is likely to have both counterbalancing and reinforcing effects over the impact of reservoir operation, reducing changes during dry season but increasing changes in most of the other months.  相似文献   

7.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

8.
The technology of waterspout monitoring over the Russian part of the Black Sea is presented. The technology was developed using the foreign experience of tornado and waterspout prediction and the data from the meteorological observation network of the Russian Federation. The technology is based on the software for the organization and maintenance of operational database including the data of satellite imagery, numerical weather prediction models, lightning detection systems, and weather radars. It was found that the results of the use of the presented technology for analyzing waterspout-risk conditions during the waterspout season are of the greatest interest. The waterspout season in the Black Sea area usually begins in May and ends in September. The review of waterspout occurrence over the Russian part of the Black Sea in 2014 is presented.  相似文献   

9.
This study examines the seasonal cycle of the components of the surface energy balance in the Volta basin in West Africa as part of the GLOWA-Volta project. The regional climate is characterized by a strong north–south gradient of mean annual rainfall and the occurrence of pronounced dry and wet seasons within one annual cycle, causing a strong seasonal variation in the natural vegetation cover. The observations are conducted with a combined system, consisting of a Large Aperture Scintillometer (LAS) for areally averaged sensible heat flux, radiometers and sensors for soil heat flux. For comparisons the eddy-covariance (EC) method providing the fluxes of momentum, sensible and latent heat is utilized as well. The measurements of a seasonal cycle in 2002/2003 were gathered including the rapid wet-to-dry transition after the wet season at two locations in Ghana, one in the humid tropical southern region and one in the northern region. A direct comparison and the energy balance closure of the two methods are investigated for daytime and nighttime separately. An attempt is made to understand and explain the differences between the two methods and the closure of energy budget found for these. It is found that the two systems correspond well during daytime. During nighttime the LAS seems to perform more realistically than the EC system. Considering the fact that a LAS system is much easier to use in the climate conditions of the Volta basin, it is concluded that the LAS approach is very suitable in this type of climate conditions. Surface conductances are estimated by rearranging the Penman–Monteith equation and compared to a Jarvis-type model optimised for savannah conditions. It is found that temperature dependence should be included in the conductance formulation in contrast to earlier findings. Based on the findings the gathered dataset can be used for further model studies of the climate and environment of West Africa.  相似文献   

10.
The retrieved results in this paper by GMS-5/VISSR thermal infrared data with single time/dual channel Split-Window Algorithm reveal the characteristics of diurnal and seasonal variation of clear-sky land surface temperature (LST) of several representative land surface types in China,including Tarim Basin,Qinghai- Tibetan Plateau,Hunshandake Sands,North China Plain,and South China.The seasonal variation of clear-sky LST in above areas varies distinctly for the different surface albedo,soil water content,and the extent of influence by solar radiation.The monthly average diurnal ranges of LST have two peaks and two valleys in one year.The characteristics of LST in most land of East Asia and that of sea surface temperature (SST) in the south of Taiwan Strait and the Yellow Sea are also analyzed as comparison.Tarim Basin and Hunshandake Sands have not only considerable LST diurnal cycle but also remarkable seasonal variation. In 2000,the maximum monthly average diurnal ranges of LST in both areas are over 30 K,and the annual range in Hunshadake Sands reaches 58.50 K.Seasonal variation of LST in the Qinghai-Tibetan Plateau is less than those in East Asia,Tarim Basin,and Hunshandake Sands.However,the maximum diurnal range exists in this area.The yearly average diurnal range is 28.05 K in the Qinghai-Tibetan Plateau in 2000.The characteristics of diurnal,seasonal,and annual variation from 1998 to 2000 are also shown in this research. All the results will be valuable to the research of climate change,radiation balance,and estimation for the change of land surface types.  相似文献   

11.
王旻燕  吕达仁 《气象学报》2005,63(6):957-968
文中利用单时相双光谱分裂窗算法以GMS 5/VISSR红外资料反演地表温度,揭示了中国几类典型下垫面晴空地表温度的日变化及季节变化特征.塔里木盆地、青藏高原、浑善达克沙地、华北平原北部、华南部分地区因地表反射率、土壤含水量、受太阳辐射影响程度不同等地表温度季节变化差异很大,月平均地表温度日较差一年内基本上呈双峰双谷型.作为比较,东亚部分陆地的地表温度与台湾海峡南部、黄海的海表温度及其日变化、季节变化一并进行了分析.塔里木盆地、浑善达克沙地不仅具有强烈的日变化,而且季节变化也显著.2000年两地月平均地表温度日较差最大值超过30 K,浑善达克沙地的年较差高达58.50 K.青藏高原地表温度季节变化小于东亚部分陆地、塔里木盆地、浑善达克沙地,但该区日变化幅度在所研究几个区中最大,2000年年平均日较差达28.05 K.文中将研究时段扩充到1998~2000年后揭示了连续三年地表温度及其日变化的年际变化特征.所获得这几类地表温度的变化特征与量值对于气候与辐射收支研究以及推测地表状况会有一定参考价值.  相似文献   

12.
In this study, a long-term comparative assessment of the potential of wave power in the Black Sea was conducted using the calibrated and validated SWAN (Simulating WAves Nearshore) model forced by two well-known wind fields. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and National Centers for Environmental Prediction/Climate Forecast System Reanalysis (NCEP/CFSR) wind fields were used, covering data from 1979 to 2018. In general, the wave power potential based on the results of the CFSR wind field was found to be slightly higher than that obtained with the ERA-Interim wind field. The greatest discrepancy between the results of the ERA-Interim and CFSR wind fields was observed in the northeastern Black Sea. The spatial distributions of the wave power were also evaluated on a seasonal scale using wave parameters obtained from the calibrated SWAN model. The wave climate obtained from both long-term and seasonal assessments indicates that the western Black Sea, especially the southwestern Black Sea, is characterized by higher wave power potential and lower variability, while the eastern Black Sea has lower wave power potential and higher variability. Stable and powerful long-term wave conditions in the southwestern Black Sea can indicate that this region is a suitable location for wave farms. In contrast, the effect of the long-term variability on wave power is greatest in the eastern Black Sea owing to the highly variable wave conditions in this region.  相似文献   

13.
This study presents the first results of monthly, seasonal and annual characteristics of temperature lapse rate on the southern slope of the central Himalayas, based on 20 years record of surface air temperature at 56 stations in Nepal. These stations are located at a range of elevations between 72 and 3,920 m above sea level. It is proven that the lapse rate can be calculated with a linear regression model. The annual cycle of temperature lapse rate exhibits a bi-modal pattern: two maxima in the pre- and post-monsoon seasons respectively separated by two minima in winter and summer, respectively. This pattern is different from the findings from the other mountain regions and suggests different controlling factors in the individual seasons. The highest temperature lapse rate occurs in the pre-monsoon and is associated with strong dry convection (i.e., corresponding to the clear weather season and considerable sensible heat flux). The post-monsoon has the second highest lapse rate, and its cause is similar to the pre-monsoon season but with a relatively small thermal forcing effect after the rainy summer. The lowest lapse rate occurs in winter and is associated with strong radiative cooling and cold air flows over low-elevation areas. The summer lapse rate minimum is due to latent heating over the higher elevations and reduced solar heating over the lower elevations.  相似文献   

14.
Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.  相似文献   

15.
Analyzed are the similarities and differences in the processes of intraseasonal variability of wind conditions in extremely cold and extremely warm real winter seasons 1953/54 and 1965/66. Revealed is the significance of the contribution of calm pauses to the formation mechanism of seasonal characteristics on the whole and, to much greater degree, to the determination of the properties of weather windows. Emphasized is a role of calm pauses as the indicators of weather windows. Studies is the possibility of estimating the severity of winter conditions using a set o characteristics of initial ten-day periods of winter season within the arbitrary annual cycle.  相似文献   

16.
南海海平面高度年循环的特征   总被引:10,自引:0,他引:10  
根据 TOPEX/ POSEIDON-ERS高度计提供的海平面高度异常资料和并行海洋气候模式(POCM)模拟海平面高度资料,分析了南海海平面高度年循环特征。结果表明:l月,3月和5月海平面高度的异常值分别与7月,9月,11月的异常值相反。l月(7月),深水海区与吕宋海峡的海平面高度为负(正)异常,在大部分陆架区和南海的西和南部,海平面高度为正(负)异常。在3月(9月),除海平面高度异常的量级已减少,且较小的SSH正异常(负异常)出现在南海的中部以外,海平面高度异常的分布型与 1月(7月)类似; SSH的年循环的最大振幅出现在吕宋岛的西北海域;风的季节变化是南海SSH季节变化的主要原因。  相似文献   

17.
This study analyzes extremes of geostrophic wind speeds derived from sub-daily surface pressure observations at 13 sites in the European region from the Iberian peninsula to Scandinavia for the period from 1878 or later to 2007. It extends previous studies on storminess conditions in the Northeast (NE) Atlantic-European region. It also briefly discusses the relationship between storminess and the North Atlantic Oscillation (NAO). The results show that storminess conditions in the region from the Northeast Atlantic to western Europe have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences (especially between winter and summer, and between the British Isles-North Sea area and other parts of the region). In the North Sea and the Alps areas, there has been a notable increase in the occurrence frequency of strong geostrophic winds from the mid to the late twentieth century. The results also show that, in the cold season (December–March), the NAO-storminess relationship is significantly positive in the north-central part of this region, but negative in the south-southeastern part.  相似文献   

18.
In this study, the ability of a regional climate model, based on MM5, to simulate the climate of the Middle East at the beginning of the twenty-first century is assessed. The model is then used to simulate the changes due to global warming over the twenty-first century. The regional climate model displays a negative bias in temperature throughout the year and over most of the domain. It does a good job of simulating the precipitation for most of the domain, though it performs relatively poorly over the southeast Black Sea and southwest Caspian Sea. Using boundary conditions obtained from CCSM3, the model was run for the first and last 5 years of the twenty-first century. The results show widespread warming, with a maximum of ~10 K in interior Iran during summer. It also found some cooling in the southeast Black Sea region during spring and summer that is related to increases in snowfall in the region, a longer snowmelt season, and generally higher soil moisture and latent heating through the summer. The results also show widespread decreases in precipitation over the eastern Mediterranean and Turkey. Precipitation increases were found over the southeast Black Sea, southwest Caspian Sea, and Zagros mountain regions during all seasons except summer, while the Saudi desert region receives increases during summer and autumn. Changes in the dominant precipitation-triggering mechanisms were also investigated. The general trend in the dominant mechanism reflects a change away from the direct dependence on storm tracks and towards greater precipitation triggering by upslope flow of moist air masses. The increase in precipitation in the Saudi desert region is triggered by changes in atmospheric stability brought about by the intrusion of the intertropical convergence zone into the southernmost portion of the domain.  相似文献   

19.
A method of the NCEP/NCAR reanalysis wind data recalculation using a regional atmospheric circulation model is described. A comparison of model results and satellite measurements is performed. The results of wind wave computation using the reanalysis and model winds are presented and their comparison is made. It is shown that the NCEP/NCAR reanalysis wind recalculation using a regional atmospheric circulation model removes the underestimation in the reanalysis winds, provides a better representation of the wind regime, and, consequently, gives a possibility to create the reanalysis of wind regime in the Black Sea region to be used in climate estimates.  相似文献   

20.
The seasonal and interannual variability ofcloud fraction over the Black Sea region for the period of1985-2009 is analyzed using the CM SAF dataset obtained from the satellite measurements of a high-resolution AVHRR instrument. The features of geographic distribution and seasonal variations in cloudiness are investigated. The causes for its spatial inhomogeneity in different months are analyzed. It is demonstrated using the long-term dataset that the dramatic decrease in the amount of cloudiness occurred over the Black Sea region from 67% in 1985 to 54% in 2008. The value of the trend is -0.4% per year. Both the trends and the features of interannual variability of cloudiness, in particular, strongly pronounced four-year cycles, are in antiphase with variations in sea surface temperature. The cloudiness reduction accompanied by the increase in the influx of short-wave radiation may be the basic reason for the warming and sea surface temperature variations in the Black Sea region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号