首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A laboratory heating experiment was conducted in an attempt to evaluate the possible role of lipids as precursors for petroleum hydrocarbons. Lipids were extracted from a Recent lake sediment (Lake Haruna, Japan), and heated under N2 atmosphere, at 125–370°C, for 1–7 days. A significant amount of lipids was polymerized to kerogen-like matter (lipid-derived kerogen) at the low temperature of 175°C for 1 day. The polymerization follows first-order kinetics, and the half life of lipids is calculated to be 104–105 yr at 0–30°C. The lipid-derived kerogen generated a significant amount (62 mg/g) of n-alkanes (C14–C36) on heating at 350°C for 1 day.The results indicate a possible occurrence of lower temperature thermal polymerization of lipids in a relatively early stage of diagenesis as one of the formation pathways of kerogen with high hydrocarbon producing potential.  相似文献   

2.
The ratio of the abundance of the C19:1 isoprenoids 1-pristene and 2-pristene to the abundance of (nC17:1 + nC17:0) is significantly lower in pyrolysates of kerogens from highly anoxic depositional environments than in pyrolysates of kerogen if similar types and levels of catagenesis from more oxic organic facies. 13C-NMR analysis shows that the occurrence of lower relative concentrations of isoprenoid precursors also correlates with the occurrence of low proportions of oxygen-bonded carbon and high proportion of aliphatic carbon in kerogens. The ratio of 1-pristene to (n-C17:1 + nC17:0) can be correlated laterally and statigraphically within a basin. There is no clearly discernible dependence of relative isoprenoid concentration of kerogen type for oil-generative kerogens, although immature lignites have high 1-pristene/(nC17:1 + nC17:0) ratios.The 1-pristene/(nC17:1 + nC17:0) ratios in kerogens pyrolysates from the same organic facies decrease logarithmically with increasing catagenesis and can be correlated directly with measured vitrinite reflectance values. Geologic and experimental data imply that 1-pristene precursors are lost from kerogen more rapidly than the precursors of the C18 isoprenoid.The lower relative isoprenoid concentrations observed in anoxically deposited kerogens appear to be the result of the enhanced preservation of normal alkyl groups and the enhanced formation of free isophrenoids early in the sequence of kerogen alteration. These results are significant to the use of isoprenoids as geochemical marker oils, bitumens, and kerogens and to the determination of the structure and diagenesis of isoprenoid precursors.  相似文献   

3.
The geothermal site of Lavey-les-Bains, Switzerland is an Alpine deep flow system in fractured crystalline rocks. Groundwater analyses since 1973 reveal a mixing process between a deep warm component (68°C and TDS 1.4 g/L) and cold shallow water. The production rate of the new deep well P600, installed in 1997, has amplified this mixing process in well P201, for which a decline in temperature and TDS has been observed. Numerical hydrogeological two-dimensional and three-dimensional models of heat, flow and mass transport have been developed to reproduce the geothermal system and to forecast the long-term exploitation potential of the geothermal resource. The computed temperature of the deep inferred reservoir (100–130°C) is in agreement with the geothermometers, whereas the simulated thermal water flux (5,400–9,000 m3/day) is probably underestimated. Different fluid production scenarios can reproduce the decline and stabilization phases of temperatures in the geothermal field since 1997. For P201, the mixing ratio calculated before and during the exploitation of P600 is comparable with observed data; the modelled temperature tends towards stabilization in P201 at 56°C after 10–15 years of production at P600. Another proposed new well is likely to reduce the thermal output of the existing wells.  相似文献   

4.
Open-system non-isothermal pyrolysis up to 1,200°C in combination with elemental analysis was used to study the thermal liberation of molecular nitrogen (N2) from sedimentary rocks and kerogen concentrates of Palaeozoic age from the Central European Basin system and an Eocene shale (Liaohe Basin, China) with a high content (36%) of ammonium feldspar (buddingtonite). The N/Corg (atomic) ratios of the kerogen concentrates ranged from 0.005 to 0.014, which represents the range commonly observed for coals. Bulk N/Corg ratios of the Palaeozoic shales extended from 0.035 to 0.108, indicating the presence of significant amounts of inorganic nitrogen. Namurian A and A-B (CnA; CnA-B) samples typically exhibited the earliest onset of N2 generation with intense, characteristic peaks around 600°C. N2 liberation from the buddingtonite-rich sample occurred at higher temperatures, with a broad peak around 700°C. Pyrograms of the kerogen concentrates showed no or strongly reduced N2 generation in the 500–700°C range. On-line isotope-specific analysis of the pyrolytically liberated N2 on one sample revealed a variability of ∼10‰ in the δ15N values and a steady increase in δ15N with temperature during the main phase of N2 generation.  相似文献   

5.
Diffusion modelling of growth-zoned garnet is used in combination with standard geothermometric and geobarometric techniques to estimate cooling and denudation rates from the mafic eclogites of the Red Cliff area, Great Caucasus, Russia. Euhedral garnet porphyroblasts exhibit different degrees of prograde growth zoning depending on the size of the grain (100 μm to several mm in diameter). Zoning patterns are mainly expressed in terms of Fe–Mg exchange, with 100*Mg/(Mg+Fe) increasing from 18–20 to 33–37 from core to rim. Geothermobarometry yields conditions of 680±40 °C and a minimum of 1.6±0.2 GPa and of 660±40 °C and 0.8±0.2 GPa for the high-pressure and retrograde stages of equilibration, respectively. A temperature of 600±40 °C has been recorded for the late-stage metamorphic overprint in the mica schists surrounding the eclogites. Relaxation of garnet zoning profiles was modelled for three different hypothetical PT t trajectories, all with an initial temperature of 680 °C and a pressure change of 0.8 GPa. The first two trajectories involve decompression associated with regular cooling down to 660 °C (near isothermal) and 600 °C. The third path is a two-step trajectory comprising near-isobaric cooling down to 600 °C followed by isothermal decompression to 0.8 GPa. These P–T trajectories cover as wide a range of pressure and temperature changes endured by the rocks as possible, thus representing extreme cases for calculating cooling and exhumation rates. Calculations indicate that the zoning pattern of the smallest garnet (i.e. garnet for which the zoning is most easily eliminated during post-growth processes) along the different paths can be preserved for the following average exhumation and cooling rates: path 1, 143 mm a?1 and 102 °C Ma?1; path 2, 60 mm a?1 and 171 °C Ma?1; path 3, 11–30 mm a?1 and 200–400 °C Ma?1. These results are discussed in light of theoretical P–T–t paths extracted from thermal models of regions of thickened crust, and from analogue models of accretionary wedge and continental lithosphere subduction.  相似文献   

6.
The catagenesis of organic matter (OM) was modeled by the hydrous pyrolysis of a Riphean mudstone. Microscopic observations of the processes operating during kerogen heating to 600°C were conducted in a diamond anvil cell. The results of pyrolysis in an aqueous environment were used to calculate the activation energies of kerogen cracking and derive chemical kinetic models for OM catagenesis. Isothermal experiments were carried out for 3 days at temperatures of 300, 310, …, 360, and 370°C. The maximum bitumen yield was obtained at 330°C followed by thermal cracking at higher temperatures. The aromatic and saturated hydrocarbons from rock bitumen, hydrous pyrolyzates, and kerogen flash pyrolyzates were analyzed by chromatography-mass spectrometry. We also discuss the problem of extrapolation of high-temperature pyrolysis results to geologic observations under the conditions of regional catagenesis.  相似文献   

7.
The insoluble organic material in the Orgueil (Cl) chondrite was analyzed by combined high vacuum pyrolysis-gas chromatography-mass spectrometry. Stepwise pyrolyses at 150, 300, 450 and 600°C of Orgueil meteorite powder which had been exhaustively extracted with solvents yielded a series of alkenes and alkanes to C8, an extensive series of alkylbenzene isomers, thiophene, alkylthiophenes, and benzothiophene, together with the nitrogen- and oxygen-containing breakdown products, acetonitrile, acrylonitrile, benzonitrile, acetone and phenol. The Orgueil polymer fragmentation products are very similar both qualitatively and quantitatively to pyrolysis products of solvent-extracted Pueblito de Allende (C3) chondrite described in the literature.Changes in the relative abundances of polymer degradation products between 150 and 600°C imply the preferential loss of aliphatic and certain heteroatomic portions of the polymer at lower temperatures to leave highly condensed aromatic and heteroaromatic portions of the polymer which begin to fragment only at 450–600°C. The Orgueil polymer-like matter thus appears to be a complex mixture of polymerized materials having different thermal stabilities. Similarities between vacuum pyrolyzates of the Orgueil polymer and terrestrial kerogen suggest the possibility that meteorite organic matter may have been subjected on the meteorite parent bodies to diagenetic processes similar to those by which terrestrial kerogen is formed.  相似文献   

8.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

9.
In this study kamacite was experimentally grown in taenite grains of Fe-Ni-P alloys containing between 5 and 10 wt% Ni and 0 and 1.0 wt% P. Both isothermal heat treatments and non-isothermal heat treatments at cooling rates of 2 to 5°C/day were carried out. Analytical electron microscopy was used to examine the orientation and chemical composition of the kamacite and the surrounding taenite matrix. The kamacite so produced is spindle or rod shaped and has a Widmanstätten pattern orientation. The presence of heterogeneous sites such as phosphides is necessary for the nucleation of the intergranular kamacite. During kamacite growth both Ni and P partition between kamacite and taenite with chemical equilibrium at the two phase interface. The growth kinetics are limited by the diffusion of Ni in taenite. Additional diffusion experiments showed that the volume diffusion coefficient of Ni in taenite is raised by a factor of 10 at 750°C in the presence of only 0.15 wt% P.A numerical model to simulate the growth of kamacite in Fe-Ni-P alloys, based on our experimental results, was developed and applied to estimate the cooling rates of the iron meteorites. The cooling rates predicted by the new model are two orders of magnitude greater than those of previous studies. For example the cooling rates of chemical groups I, IIIAB and IVA are 400–4000°C/106years, 150–1400°C/ 106 years and 750–6000°C/106years respectively. Previous models gave 1–4°C/106 years, 1–10°C/106 years and 3–200°C/106 years. Such fast cooling rates can be interpreted to indicate that meteorite parent bodies need only be a few kilometers in diameter or that iron meteorites can be formed near the surface of larger asteroidal bodies.  相似文献   

10.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   

11.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   

12.
A maturity indexing procedure based on the isotopic difference between the total accumulated methane produced by exhaustive pyrolysis and the kerogen (Δ13C) and the mole ratio of methane to kerogen carbon (CMR), has been tested by applying a standardized technique, i.e. exhaustive pyrolysis (600°C for 120 hr) of extracted-powdered samples and measurement of the amounts and isotopic composition of the methane and kerogen carbon, on a suite of 15 Bakken shale samples.A linear relation was found between the carbon mole ratio of pyrolysis-derived methane and total organic carbon and the δ13C difference between the pyrolysis-derived methane and total organic carbon (r = −0.79); and between the amount of CH4 generated from exhaustive pyrolysis and H/C atomic ratios (r = +0.91).  相似文献   

13.
Abstract

Diorites and granitoids that intruded the Upper Austroalpine units of the central Alps during the Permian display map-pable tectonic imprints and metamorphic transformations that were acquired during the Alpine tectonometamorphic cycle. Superposed heterogeneous deformations interacted with metamorphic re-equilibration stages and created a range of textural types that reflect local deformation gradients: coronitic transformations textures, normally foliated S-tectonites and mylonitic foliations. The three textural types are distinguished on maps recording foliation trajectories of successive deformation phases, which are correlated to the evolution of metamorphic assemblages. Tectonic deformation of Alpine age is represented by three generations of ductile syn-metamorphic structures. The mineral assemblages stable during the first Alpine deformation phase (D1) are AmpII + P1II + white mica, + Zo/Czo + Grt + Qtz ± Mg-Ch1 ± Ilm in metadiorites and P1II + white micaI + Zo/Czo + Grt + AmpII + Qtz ± Ilm/Ttn in metagranitoids; the successive foliations D2a and D2b are defined by greenschist facies minerals. Thermobarometric estimates allow T = 500–600 °C and P = 1.1 ± 0.2 GPa conditions to be determined during D1 and T ≤ 350 °C and P ≤ 0.5 GPa during D2. Relict igneous minerals in metadiorites allow to determine intrusive conditions of T = 879 ± 110 °C and P = 0.4–0.7 GPa. Radiometric ages and P/T ratio of Alpine PmaxTPmax suggest that the inferred P-T-d-t path may represent the thermal state of the initial Alpine subduction stages. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

14.
《Applied Geochemistry》1991,6(5):509-521
Bands of calcite and dolomite cements alternating with zones of nearly carbonate-free sand occur in the Stevens sandston aat North Coles Levee, San Joaquin, Valley, California. Temperatures calculated from O isotopes suggest that the calcite cement bands were emplaced episodically as a result of repeated injections of hot water from deeper in the section. Burial analysis suggests that these cements precipitated from 7 Ma to the present over the temperature range of 45 to ∼95°C.Carbon isotope data suggest that the C in the cements is a mixture derived from two sources, detrital shell material (δ13C(PDB)≈) and CO2 liberated from maturing kerogen (δ13C ≈ −24). Plots of δ13C vs time and depth of crystallization show that the cementation sequence was: (1) dolomite cements, possibly concretionary, precipitated at depths <1–2 km and at temperatures <45°C; (2) calcite cements with δ13C(PDB) values as low as −13, crystallized from depths between 1220 and 1820 m (4000 and 6000 ft) and at temperatures between 45 and 80°C; (3) calcite cements with δ13C(PDB) values approaching zero and calculated temperatures of crystallization up to the present reservoir temperature of 95±3°C.A log of δ13C vs calculated depth of crystallization correlates with the stratigraphic column at North Coles Levee. If the correlation is valid the light δ13 in each cement sample can be tied to its source. A model based on this interpretation suggests that the early, light C was derived from maturing kerogen in the Kreyenhagen Formation (Eocene) as it passed through the oil window between 4 and 5 Ma. The subsequent passage of younger sediments with less organic material produced correspondingly smaller amounts of light CO2 which was reflected in the relatively heavier C isotopes in the later cements.It is suggested that the epidsodic injections of hot water carried dissolved gases and minerals, principally calcite, upward from rocks as deep as 2–3 km below the Stevens sandstone and reprecipitated the calcite in more permeable zones in the rock. Degassing of CO2 from rising pore waters likely triggered the precipitation and accounts for the relatively large volumes of cement. The Sibson model for seismic pumping of pore fluids is considered a likely explanation for the observed cementation.  相似文献   

15.
Electrical resistivity and 57Fe Mössbauer spectra are reported for three calcic amphiboles with different Fe concentrations. AC measurements (20?Hz–1?MHz) were performed, applying impedance spectroscopy between 100 and 785?°C in an N2 gas atmosphere. It was found that up to three semiconducting charge transport processes can be distinguished, which in part changed slightly when several runs were carried out to higher temperatures. The extrapolated DC resistivity is much smaller for an amphibole with high Fe content than for the two with lower Fe concentrations. The derived activation energies are between ~0.48 and ~1.06?eV. For temperatures ≤600?°C the results are compatible with a charge transport mechanism due to electron hopping between Fe2+ and Fe3+. Above 600?°C, dehydrogenation and/or beginning amphibole decomposition obviously alter the conduction mechanism. From Mössbauer spectra it was established that in all amphibole samples Fe2+ and Fe3+ are simultaneously present. Mössbauer parameters were derived by fitting the observed spectra to models taking the occupation of various M sites into account.  相似文献   

16.
The radiation resistance of the phase (Gd,Cm)2Sn2O7 with a pyrochlore-type structure containing 3.0 wt % 244Cm was studied. It was established that amorphization occurs at a dose of 1019 α-decay/g (1.52 displacements per atom), which is 2–5 times higher than that needed for amorphization of titanate and titanate–zirconate pyrochlore phases with a similar structure. The heating of the amorphous ceramics restores the structure of the pyrochlore. The restoration process begins in the temperature interval of 600–700°C. This allows us to estimate the critical amorphization temperature as 650°C. On the 14th day, the rate of Cm leaching from the initial sample in water at 90°C is 10–1; Gd, 10–2; and Sn, 10–3 g/(m2 day). After amorphization the leaching rate increases by an order of magnitude (Cm) and two orders of magnitude (Gd), but it does not change for Sn. Compared to the zirconate and titanate–zirconate phases, stannate pyrochlore is markedly less resistant in water and cannot be regarded as a matrix for the immobilization of REE-actinide fraction wastes.  相似文献   

17.
Low-cost adsorbents, e.g., cow manure-based carbon, provide alternatives to remove veterinary antibiotic sulfamethazine (SMT) from contaminated water bodies. In this study, the chemical structures and compositions of cow manure (CM) carbonized at 400, 600, and 800 °C (CM400, CM600, and CM800) were examined using elemental analyzer (EA), Brunauer–Emmett–Teller, and spectroscopic techniques. Adsorptions of SMT on CM samples were conducted as functions of pH, hydrophobicity, and ionic strengths. Results of EA and spectroscopic analyses suggested that the raw CM and CM400 samples contained the highest amounts of O-containing groups and aliphatic domains. Amounts of such two chemical groups decreased as carbonization temperatures increased. The specific surface areas and total pore volumes of CM samples increased significantly when the carbonization temperatures exceeded 600 °C. SMT adsorption on CM samples could be described essentially by the pseudo-second-order kinetic, intra-particle diffusion, and Freundlich isotherm models. Low pH and ionic strength were favorable for SMT adsorption in CM samples, particularly for the CM800, because a strong π +π electron donor–acceptor interaction (π +π EDA) was formed between SMT and CM surfaces enriched with hydrophobic domains. Further, the high adsorption affinity of SMT to the CM600 and CM800 samples was attributed in part to their larger surface areas and total pore volumes. Generally, CM-based materials carbonized >600 °C showed relatively stable structures and exhibited strong aromatic properties. Moreover, maximum adsorption capacities of SMT on the CM800 sample (37–39 mM/kg) were significantly higher than those of other common adsorbents (0.02–35.93 mM/kg).  相似文献   

18.
Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500°C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration.  相似文献   

19.
Experimentally reversed corundum solubilities in pure water at 400° to 700°C and 0.7 to 3 kbar yield values of dissolved aluminum that range from 1–4 ppm Al. At constant pressure the solubility shows a sigmoidal behavior with a slight maximum at 500°C and minimum at 600°C. Corundum solubility increases with increasing pressure at constant temperature. The dissolved aluminum appears to form an uncharged, but polar species under these conditions probably of the form Al(OH)30.  相似文献   

20.
This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 °C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 °C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. δ13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the δ13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for δ13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called “dogleg” trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar “dogleg” trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the Δδ13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13–84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115–1568 Nm3/t) compared with those determined from the experiments (65–302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号