首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Allan Rodhe  Jan Seibert 《水文研究》2011,25(12):1899-1909
Knowledge of groundwater dynamics is important for the understanding of hydrological controls on chemical processes along the water flow pathways. To increase our knowledge of groundwater dynamics in areas with shallow groundwater, the groundwater dynamics along a hillslope were studied in a boreal catchment in Southern Sweden. The forested hillslope had a 1‐ to 2‐m deep layer of sandy till above bedrock. The groundwater flow direction and slope were calculated under the assumption that the flow followed the slope of the groundwater table, which was computed for different triangles, each defined by three groundwater wells. The flow direction showed considerable variations over time, with a maximum variation of 75°. During periods of high groundwater levels the flow was almost perpendicular to the stream, but as the groundwater level fell, the flow direction became gradually more parallel to the stream, directed in the downstream direction. These findings are of importance for the interpretation of results from hillslope transects, where the flow direction usually is assumed to be invariable and always in the direction of the hillslope. The variations in the groundwater flow direction may also cause an apparent dispersion for groundwater‐based transport. In contrast to findings in several other studies, the groundwater level was most responsive to rainfall and snowmelt in the upper part of the hillslope, while the lower parts of the slope reached their highest groundwater level up to 40 h after the upper parts. This can be explained by the topography with a wetter hollow area in the upper part. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

6.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

7.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes and analyses a hillslope–channel slope failure event that occurred at Wet Swine Gill, Lake District, northern England. This comprised a hillslope slide (180 m3, c. 203 ± 36 t), which coupled with the adjacent stream, resulting in a channelized debris flow and fluvial flood. The timing of the event is constrained between January and March 2002. The hillslope failure occurred in response to a rainfall/snowmelt trigger, on ground recently disturbed by a heather moorland fire and modified by artificial drainage. Slide and flow dynamics are estimated using reconstructed velocity and discharge values along the sediment transfer path. There is a rapid downstream reduction in both maximum velocity, from 9·8 to 1·3 m s?1; and maximum discharge, ranging from 33·5 to 2·4 m3 s?1. A volumetric sediment budget quantified a high degree of coupling between the hillslope and immediate channel (~92%: 167 m3), but virtually all of the sediment was retained in the first‐order tributary channel. Approximately 44% (81 m3) of the slide volume was retained in the run‐up deposit, and termination of the debris flow prior to the main river meant that the remainder did not discharge into the fluvial system downstream. These results suggest poor transmission of sediment to the main river at the time of the event, but importantly an increase in available material for post‐event sediment transfer processes within the small upland tributary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
As Andean glaciers rapidly retreat due to climate change, the balance of groundwater and glacial meltwater contributions to stream discharge in tropical, proglacial watersheds will change, potentially increasing vulnerability of water resources. The Shullcas River Watershed, near Huancayo, Peru, is fed only partly by the rapidly receding Huaytapallana glaciers (<20% of dry season flow). To potentially increase recharge and therefore increase groundwater derived baseflow, the government and not‐for‐profit organizations have installed trenches along large swaths of hillslope in the Shullcas Watershed. Our study focuses on a nonglacierized subcatchment of the Shullcas River Watershed and has 2 objectives: (a) create a model of the Shullcas groundwater system and assess the controls on stream discharge and (b) investigate the impact of the infiltration trenches on recharge and baseflow. We first collected hydrologic data from the field including a year‐long hydrograph (2015–2016), meteorological data (2011–2016), and infiltration measurements. We use a recharge model to evaluate the impact of trenched hillslopes on infiltration and runoff processes. Finally, we use a 3‐dimensional groundwater model, calibrated to the measured dry season baseflow, to determine the impact of trenching on the catchment. Simulations show that trenched hillslopes receive approximately 3.5% more recharge, relative to precipitation, compared with unaltered hillslopes. The groundwater model indicates that because the groundwater flow system is fast and shallow, incorporating trenched hillslopes (~2% of study subcatchment area) only slightly increases baseflow in the dry season. Furthermore, the location of trenching is an important consideration: Trenching higher in the catchment (further from the river) and in flatter terrain provides more baseflow during the dry season. The results of this study may have important implications for Andean landscape management and water resources.  相似文献   

14.
We measured deuterium excess (d = δD ? 8δ18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9‰ relative to Vienna standard mean ocean water (V‐SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3–6·9‰ V‐SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential‐piston flow model and a dispersion model. MRTs for soil water were 0–5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5–8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8–9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This study documented the spatial and temporal variability of outflow from a forested hillslope segment during snowmelt at a small mountain catchment in south coastal British Columbia, Canada. A pit 5 m wide was established just upslope from the stream channel. Outflow from the organic horizon was intercepted and measured by a single trough, and outflow from the mineral horizons was measured separately for three adjacent sections. Throughflow exhibited non‐steady‐state behaviour involving shifting allocations of flow amongst different sections of the outflow pit, as well as threshold effects and hysteresis in the relationship between pit outflow and water table elevation. Most of the pit outflow originated from the mineral horizons, indicating that throughflow was the dominant pathway by which water was delivered to the stream channel. Direct precipitation and snowmelt onto near‐stream saturated areas can account for less than 20% of the total outflow from the hillslope segment. Throughflow from the mineral sections consistently peaked either at the same time as or earlier than stream flow from the 150‐ha catchment during diurnal snowmelt cycles, indicating that throughflow appears to respond rapidly enough to contribute to snowmelt‐induced peak stream flow. Pit outflow cannot be extrapolated reliably to the catchment scale on the basis of simple length‐ or area‐based ratios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper considers the contributions of overland flow, throughflow and deep seepage to the generation of streamflow in a salt-affected, deeply weathered landscape. Runoff mechanisms on a small hillslope in south-western Australia were dependent on the extent and development of variable source areas. In winter, streamflow generation was controlled by returnflow, saturation overland flow and throughflow. In summer, post-ponding, infiltration-excess and saturation overland flow dominated. The extent of the variable source area and the magnitude of streamflow were due to antecedent soil moisture, rainfall and slope morphology. Concave hillslope sections accumulated soil moisture due to both saturated and unsaturated lateral flow processes. Throughflow provided the mechanism and vehicle for solute movement from the groundwater discharge area to the stream. However, discharge from the deep aquifer was the primary mechanism responsible for soil salinity and maintaining the core of the variable source area. Estimates of throughflow which only take account of soil-water movement and disregard returnflow, will underestimate the magnitude of throughflow.  相似文献   

17.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates particulate phosphorus (PP) and soluble reactive phosphorus (SRP) concentrations at the outlet of a small (5 km²) intensively farmed catchment to identify seasonal variability of sources and transport pathways for these two phosphorus forms. The shape and direction of discharge‐concentration hystereses during floods were related to the hydrological conditions in the catchment during four hydrological periods. Both during flood events and on an annual basis, contrasting export dynamics highlighted a strong decoupling between SRP and PP export. During most flood events, discharge‐concentration hystereses for PP were clockwise, indicating mobilization of a source located within or near the stream channel. Seasonal variability of PP export was linked to the availability of stream sediments and the export capacity of the stream. In contrast, hysteresis shapes for SRP were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P‐rich soil horizons. SRP concentrations were the highest when the relative contribution of deep groundwater from the upland domain was low compared with wetland groundwater. Hence, soils from non‐fertilized riparian wetlands seemed to be the main source of SRP in the catchment. This conceptual model of P transfer with distinct hydrological controls for PP and SRP was valid throughout the year, except during spring storm events, during which PP and SRP exports were synchronized as a consequence of overland flow and erosion on hillslopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A combination of hydrometric data and observations of natural isotope (oxygen-18) variations in saturation overland flow and stream discharge were used to investigate the sources of storm run-off in a headwater swamp located in a permanent groundwater discharge zone near Toronto, Canada. The results of a two-component hydrograph separation indicated that pre-event water formed 80–90% of the stream hydrograph volume for six of the seven storms analyzed in June–November 1990. However, the instantaneous event water contribution showed considerable variability, ranging from maximum values of 20–25% for four moderate intensity storms to 63% for a high intensity thunderstorm with a return period of two years. The relative contribution of event and pre-event water to storm run-off from saturated areas and small streamlets within the swamp was similar to the main outlet stream. The dominance of pre-event water during storms could be accounted for by the mixing of a small volume of event water with a large pool of pre-event water on the surface of permanently saturated areas within the swamp. Occasional storms of high intensity or long duration produced a greater shift towards an event water signature in the saturated areas and a larger event water contribution to the outlet stream hydrograph.  相似文献   

20.
Groundwater ridging is the rapid rise of a shallow water table during a rainfall event, in an environment where, in the pre‐event period, the capillary fringe extends to the ground surface. Groundwater ridging is widely cited to account for the observed significant appearance of pre‐event water in a stream stormflow hydrograph. Various hypotheses have been advanced to explain the groundwater‐ridging mechanism; and most recently, from a field study site in South Africa, an energy hypothesis was proposed, which explains that groundwater‐ridging water‐table rise is a result of rapid introduction and transmission of additional pressure head into the capillary fringe from an intense rainfall at the ground surface. However, there is a need for further analysis and evidence from other field study sites to confirm and support this newly proposed energy hypothesis. The objectives of this paper are, therefore, as follows: to review previous observations on groundwater ridging, from other study sites, in order to deduce evidence of the newly proposed energy hypothesis; to present and evaluate a one‐dimensional diffusion mathematical model that can simulate groundwater‐ridging water‐table rise, based on the newly proposed energy hypothesis; and to evaluate the importance of a capillary fringe in streamflow generation. Analysis of previous observations from other study sites generally indicated that the rate of groundwater‐ridging water‐table rise is directly related to the rainfall intensity, hence confirming and agreeing with the newly proposed energy hypothesis. Additionally, theoretical results by the mathematical model agreed fairly well with the field results observed under natural rainfall, confirming that the rapidly rainfall‐induced energy is diffusively transmitted downwards through pore water, elevating the pressure head at every depth. The results in this study also support the concept of a three‐end‐member stream stormflow hydrograph and contribute to the explanation of how catchments can store water for long periods but then release it rapidly during storm events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号