首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The flow patterns in confluence channel and the simulation of confluence flow are more complex than that in straight channel. Additional terms in the momentum equations, i.e. dissipation terms, denoting the impact of turbulence, and dispersion terms, denoting the vertical non‐uniformity of velocity, show great impacts on the accuracy of numerical simulations. The dissipation terms, i.e. the product of eddy viscosity coefficient and velocity gradient, are much larger than those of the flow in straight channel. In this study, the zero equation model and the depth‐averaged k‐ε model are used to analyse the impact of eddy viscosity. Meanwhile, the dispersion terms in the momentum equation, depending on the vertical non‐uniformity of velocity, are usually neglected in routine simulation. With the use of detailed experimental data for verification, this study presents the distribution of parameters of vertical non‐uniformity and the intimated connection between non‐uniformity parameters and accuracy of numerical simulations of confluence flow with depth‐averaged models. The results present that simulation accuracy of confluence flow is very sensitive to the turbulence modes, which cannot be handled by normal, simple turbulence model. On the contrary, the impact of dispersion terms is both flow‐condition‐dependent and place‐dependent, and such impact is negligible when secondary circulation is weak. The results indicate the key elements in modelling confluence flow and are helpful for selecting suitable numerical model and solving engineering problems encountered in confluence channel. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Monte Carlo simulations of a two‐dimensional depth‐averaged distributed bed‐roughness flow model, TELEMAC‐2D, are used to model a detailed tracer dispersion test in a complex reach of the River Severn in the Generalized Likelihood Uncertainty Estimation (GLUE) framework. A time efficient, zero equation, spatially distributed eddy viscosity model is derived from physical reasoning and used to close the flow equations. It is shown to have the property of low numerical diffusion, avoiding recourse to a globally large value of the eddy viscosity. For models of complex river flows, there are typically so many degrees of freedom in the specification of distributed parameters owing to the limitations of field data collection, that the identification of a unique model structure is unlikely. The data used here to constrain the model structure come from a continuous tracer injection experiment, comprising six spatially distributed time series of concentration measurements. Several hundred Monte‐Carlo simulations of different model structures were investigated and it was found that multiple model structures produced feasible simulations of the tracer mixing, giving rise to the phenomenon of equifinality. Rather than optimizing the model structure on the basis of the constraining data, we derive relative possibility measures that express our relative degree of belief in each model structure. These measures can then be used as weights for assessing predictive uncertainty when using a range of model structures, to estimate the flow distribution under varying stages, or for providing maps indicating fully distributed confidence limits in the risk assessments process. Such an approach is used here, and helps to identify the circumstances under which two‐dimensional modelling can be useful. The framework is not limited to the model structures that are developed herein, and more advanced process representation techniques can be included as computational efficiency increases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of floodplain vegetation on river planform have been investigated for a medium‐sized river using a 2D morphodynamic model with submodels for flow resistance and plant colonization. The flow resistance was divided into a resistance exerted by the soil and a resistance exerted by the plants. In this way it was possible to reproduce both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic resistance, reducing the flow velocities. Colonization by plants was obtained by instantaneously assigning vegetation to the areas that became dry at low water stages. This colonization presents a step forward in the modelling of bank accretion. Bank erosion was related to bed degradation at adjacent wet cells. Bank advance and retreat were reproduced as drying and wetting of the computational cells at the channel margins. The model was applied to a hypothetical case with the same characteristics as the Allier River (France). The river was allowed to develop its own geometry starting from a straight, uniform, channel. Different vegetation densities produced different planforms. With bare floodplains, the river always developed a braided planform, even if the discharge was constant and below bankfull. With the highest vegetation density (grass) the flow concentrated in a single channel and formed incipient meanders. Lower vegetation density (pioneer vegetation) led to a transitional planform, with a low degree of braiding and distinguishable incipient meanders. The results comply with flume experiments and field observations reported in the literature.  相似文献   

4.
The numerical model COUP 2D simulates the hydrological coupling between hillslopes and the river channel during a rainfall event. In order to test the numerical model, a 1:100 scaled laboratory flume which was modified to incorporate lateral hillslope elements, was used to run a series of experiments in which hillslope angle, channel angle, hillslope discharge and channel discharge were the varying parameters. Overall, there were 18 different experimental configurations with three replicates carried out for each condition, leading to a total of 54 experiments. These conditions were then used to parameterize and run COUP 2D. Internal model outputs of flow depth and flow velocity at four cross‐sections in the channel were compared to the measurements made in the physical model for the same parameter conditions. Statistical comparisons of the measured and modelled data were carried out for each experiment and across all experiments, using two goodness‐of‐fit measures—root mean square error and Nash–Sutcliffe coefficient of efficiency—in order to assess the performance of the model over an entire simulation as well as over all the simulations. The main effects on the goodness‐of‐fit measures for flow depth of each experimental variable, as well as the interactions between variables, were evaluated using statistical modelling. The results show that the model captures flow‐depth variations in response to changing channel and hillslope parameters. Statistical modelling suggests that the main effects on model error are cross‐section position, channel angle and channel discharge. Significant interactions also occur between all the channel variables and between the channel variables and hillslope discharge. The results of the testing procedure have significant implications for the consideration of different model components and for the interaction between data‐ and model evaluation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
6.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

9.
The current benchmark approach for mathematical modelling of floodplain hydrologic regime consists of dynamically coupling one‐dimensional (1D) and two‐dimensional (2D) models for flow routing along the main channel and the floodplain, respectively. For large‐scale sites, floodplain inundation may spread over hundreds of square kilometres and may last for many months and even influence seasonal floods in following years. This paper aims at evaluating the effect of vertical water balance representation on modelling a large‐scale floodplain. The Pantanal wetland (140 000 km2; Brazil) is simulated using a 1D/2D coupled model approach, which also considers the representation of vertical water processes over the floodplain. Four scenarios are simulated: Baseline (the reference scenario), NoVertBal (in which the vertical water balance over floodplain is turned off) and ETp+1 and ETp?1 scenarios, characterized by artificially increasing or decreasing daily potential evapotranspiration (ETp) by 1 mm, respectively. The results showed that the effect of the vertical water processes scenarios on channel flow is directly dependent on the lateral exchange of water between the channel and floodplain in the upstream river reach. This influence is stronger when there is a gain of water from the floodplain to the channel. The inclusion of these vertical water processes into floodplain modelling was essential to represent the process of wetting and drying, this effect being more relevant for areas not directly connected to main channels, which is a characteristic of the Pantanal region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Two‐dimensional (2D) hydrodynamic models have been increasingly used to quantify aquatic habitat and stream processes, such as sediment transport, streambed morphological evolution, and inundation extents. Because river topography has a strong influence on predicted hydraulic conditions, 2D models require accurate and detailed bathymetric data of the stream channel and surrounding floodplains. Besides collection of mass points to construct high‐resolution three‐dimensional surfaces, bathymetries may be interpolated from cross‐sections. However, limited information is available on the effects of cross‐section spacing and the derived interpolated bathymetry on 2D model results in large river systems. Here, we investigated the effects of cross‐section spacing on flow properties simulated with 2D modeling at low, medium and high discharges in two morphologically different reaches, a simple (almost featureless with low sinuosity) and a complex (presenting pools, riffles, runs, contractions and expansions) reach of the Snake River (Idaho, USA), the tenth largest river in the United States in terms of drainage area. We compared the results from 2D models developed with complete channel bathymetry acquired with multibeam sonar data and photogrammetry, with 2D model results that were developed using interpolated topography from uniformly distributed transects. Results indicate that cross‐sections spaced equal to or greater than 2 times the average channel width (W*) smooths the bathymetry and suppresses flow structures. Conversely, models generated with cross‐sections spaced at 0.5 and 1 W* have stream flow properties, sediment mobility and spatial habitat distribution similar to those of the complete bathymetry. Furthermore, differences in flow properties between interpolated and complete topography models generally increase with discharge and with channel complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A key problem in computational fluid dynamics (CFD) modelling of gravel‐bed rivers is the representation of multi‐scale roughness, which spans the range from grain size, through bedforms, to channel topography. These different elements of roughness do not clearly map onto a model mesh and use of simple grain‐scale roughness parameters may create numerical problems. This paper presents CFD simulations for three cases: a plane bed of fine gravel, a plane bed of fine gravel including large, widely‐spaced pebble clusters, and a plane gravel bed with smaller, more frequent, protruding elements. The plane bed of fine gravel is modelled using the conventional wall function approach. The plane bed of fine gravel including large, widely‐spaced pebble clusters is modelled using the wall function coupled with an explicit high‐resolution topographic representation of the pebble clusters. In these cases, the three‐dimensional Reynolds‐averaged continuity and Navier–Stokes equations are solved using the standard k ? ε turbulence model, and model performance is assessed by comparing predicted results with experimental data. For gravel‐bed rivers in the field, it is generally impractical to map the bed topography in sufficient detail to enable the use of an explicit high‐resolution topography. Accordingly, an alternative model based on double‐averaging is developed. Here, the flow calculations are performed by solving the three‐dimensional double‐averaged continuity and Navier‐Stokes equations with the spatially‐averaged 〈k ? ε〉 turbulence model. For the plane bed of fine gravel including large, widely‐spaced pebble clusters, the model performance is assessed by comparing the spatially‐averaged velocity with the experimental data. The case of a plane gravel bed with smaller, more frequent, protruding elements is represented by a series of idealized hypothetical cases. Here, the spatially‐averaged velocity and eddy viscosity are used to investigate the applicability of the model, compared with using the explicit high‐resolution topography. The results show the ability of the model to capture the spatially‐averaged flow field and, thus, illustrate its potential for representing flow processes in natural gravel‐bed rivers. Finally, practical data requirements for implementing such a model for a field example are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Numerical simulation of flows in shallow reservoirs has to be checked for its consistency in predicting real flow conditions and sedimentation patterns. Typical flow patterns may exhibit flow separation at the inlet, accompanied by several recirculation and stagnation areas all over the reservoir surface. The aim of the present research project is to study the influence of the geometry of a reservoir on sediment transport and deposition numerically and experimentally, focusing on a prototype reservoir depth between 5 and 15 m as well as suspended sediment transport.
A series of numerical simulations is presented and compared with scaled laboratory experiments, with the objective of testing the sensitivity to different flow and sediment parameters and different turbulence closure schemes. Different scenarios are analyzed and a detailed comparison of preliminary laboratory tests and some selected simulations are presented.
The laboratory experiments show that suspended sediment transport and deposition are determined by the initial flow pattern and by the upstream and downstream boundary conditions. In the experiments, deposition in the rectangular basin systematically developed along the left bank, although inflow and outflow were positioned symmetrically along the centre of the basin. Three major horizontal eddies developed influencing the sediment deposition pattern. Although asymmetric flow patterns are privileged, a symmetric pattern can appear from time to time. This particular behaviour could also be reproduced by a two-dimensional depth-averaged flow and sediment transport model (CCHE2D). The paper presents numerical simulations using different turbulence closure schemes (k-ε and eddy viscosity models). In spite of the symmetric setup, these generally produced an asymmetric flow pattern that can easily switch sides depending on the assumptions made for the initial and boundary conditions. When using the laboratory experiment as a reference, the most reliable numerical results have been obtai  相似文献   

14.
Although fractional integration and differentiation have found many applications in various fields of science, such as physics, finance, bioengineering, continuum mechanics, and hydrology, their engineering applications, especially in the field of fluid flow processes, are rather limited. In this study, a finite difference numerical approach is proposed to solve the time–space fractional governing equations of 1‐dimensional unsteady/non‐uniform open channel flow process. By numerical simulations, results of the proposed fractional governing equations of the open channel flow process were compared with those of the standard Saint‐Venant equations. Numerical simulations showed that flow discharge and water depth can exhibit heavier tails in downstream locations as space and time fractional derivative powers decrease from 1. The fractional governing equations under consideration are generalizations of the well‐known Saint‐Venant equations, which are written in the integer differentiation framework. The new governing equations in the fractional‐order differentiation framework have the capability of modelling nonlocal flow processes both in time and in space by taking the global correlations into consideration. Furthermore, the generalized flow process may possibly shed light on understanding the theory of the anomalous transport processes and observed heavy‐tailed distributions of particle displacements in transport processes.  相似文献   

15.
The riparian zone is in intimate contact with the river and, as such, is a critical zone for understanding hydrological problems. This paper presents a general modelling methodology for the assessment of riparian hydrological processes. It is applicable to a wide range of riparian spaces and incorporates current expertise in numerical methods. A core part of the modelling methodology is the random walk particle method (RWPM). We develop an RWPM as part of the ESTEL2D subsurface flow model, test it against analytical solutions and apply it to the simulation of parcels of water as they move through the riparian zone. The modelling methodology provides a new opportunity to assess fundamental hydrological process issues such as the proportioning of pre‐event and event water storm runoff, and reversals of flow in floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Alabyan  A.  Belikov  V.  Krylenko  I.  Fingert  E.  Fedorova  T. 《Water Resources》2018,45(1):1-11

Numerical modeling of flow dynamics of rivers with comprehensive channel patterns and wide floodplains during high water stage is considered to be one of the most effective methods for implementing both research and civil-engineering projects. However, realistic results of simulations can be obtained only if the model has been calibrated and validated against field observations and remote sensing data. This approach is realized for a 2D hydrodynamic model of the Oka River at the city of Ryazan (central European Russia). The Oka has a meandering channel and a wide floodplain with a complicated distributary network. The feasibility of allocating new residential quarters and infrastructure facilities on artificial “islands” on the floodplain was studied using STREAM_2D software package. Because of a significant decrease in the maximum runoff of the Oka in the recent decades, the simulations were made for the extreme spring snowmelt flood of 1970 for various scenarios of floodplain development in the past, present, and future.

  相似文献   

17.
For a proper understanding of flow patterns in curved tidal channels, quantification of contributions from individual physical mechanisms is essential. We study quantitatively how such contributions are affected by cross-channel bathymetry and three alternative eddy viscosity parameterisations. Two models are presented for this purpose, both describing flow in curved but otherwise prismatic channels with an (almost) arbitrary transverse bathymetry. One is a numerical model based on the full three-dimensional shallow water equations. Special feature of this diagnostic model is that assumptions regarding the relative importance of particular physical mechanisms can be incorporated in the computations by switching corresponding terms in the model equations on or off. We also present an idealized model that provides semi-analytical approximate solutions of the shallow water equations for all three considered alternative eddy viscosity parameterisations. It forms an aid in explaining and theorising about results obtained with the numerical model. Observations regarding Chesapeake Bay serve as a reference case for the present study. We find that the relative importance of both along-channel advective forcing and transverse diffusive forcing depends on local characteristics of the cross-sectional bottom profile rather than global ones. In our reference case, tide-residual along-channel flow induced by these forcings is not small compared to the total tidal residual. Building on this observation, we present an indicative test to judge whether advective processes should be included in leading order in modelling tide-dominated estuarine flow. Furthermore, depending on the applied eddy viscosity parameterisation (uniformly or parabolically distributed over the vertical), we find qualitatively different spatial patterns for the along-channel advective forcing.  相似文献   

18.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Two subgrid-scale modeling techniques––Smagorinsky’s postulation for the horizontal eddy viscosity and the Mellor–Yamada level-2 model for the vertical eddy viscosity––are applied as turbulence closure conditions to numerical simulations of resolved-scale baroclinic lake circulations. The use of the total variation diminishing (TVD) technique in the numerical treatment of the advection terms in the governing equations depresses numerical diffusion to an acceptably low level and makes stable numerical performances possible with small eddy viscosities resulting from the turbulence closure parameterizations. The results show that, with regard to the effect of an external wind stress, the vertical turbulent mixing is mainly restricted to the topmost epilimnion with the order of magnitude for the vertical eddy viscosity of 10−3 m2 s−1, whilst the horizontal turbulent mixing may reach a somewhat deeper zone with an order of magnitude for the horizontal eddy viscosity of 0.1–1 m2 s−1. Their spatial and temporal variations and influences on numerical results are significant. A comparison with prescribed constant eddy viscosities clearly shows the importance of subgrid-scale closures on resolved-scale flows in the lake circulation simulation. A predetermination of the eddy viscosities is inappropriate and should be abandoned. Their values must be determined by suitable subgrid-scale closure techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号