首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We conducted paired measurements of the Mg/Ca ratio and δ18O of planktonic foraminifera, Globigerina bulloides, from a sediment core (MD01‐2420) off central Japan in the northwest Pacific, to reconstruct current movements since the Last Glacial Maximum (LGM). These methods make it possible to determine the magnitude and timing of the sea surface temperature (SST) changes and to reconstruct the variations of the past seawater δ18O (δ18Ow) off central Japan. The amplitude of Mg/Ca‐based SST changes between the Holocene and the LGM was about 10°C. The strong resemblance of the SSTs estimated from both methods, Mg/Ca‐based and δ18O‐based, suggests that the SST changes were caused primarily by latitudinal displacement of the Kuroshio–Oyashio currents and no distinct change in the carbonate dissolution of the core. The southward migration of the water mass was 5–6° in latitude at the LGM. The values for regional δ18Ow changes, which were obtained by subtracting the ice volume contribution from the calculated δ18Ow, describe the millennial‐scale water mass migration over the last 30 kyr. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Models of glacio‐hydroisostatic sea‐level change have been published for the British Isles that are broadly consistent with the observational evidence, as well as with glaciological constraints. It has been argued, however, that the models fail to represent sea‐level change along the Irish Sea margins and in southern Ireland for the post‐deglaciation period. The argument rests on the interpretation of the depositional environment of the elevated ‘Irish Sea Drift’ on both sides of the Irish Sea: whether this is terrestrial or glaciomarine. The isostatic models for the British Isles are consistent with the former interpretation in that sea‐levels on either side of the Irish Sea, south of about the Isle of Man, are not predicted to have risen above present sea‐level at any time since the deglaciation of the Irish Sea. This implies that ice over both the Irish Sea and Ireland was relatively thin (ca. 600–700 m over Ireland). If the glaciomarine interpretation of the elevated Irish Sea Drift is correct, then the maximum ice thickness over central and southern Ireland would have to reach 2000 m, exceeding that over Scotland. Furthermore, for the resulting sea‐level change to be consistent with the Holocene evidence, this thick ice sheet could not have extended to the eastern side of the Irish Sea. Nor could it have been very thick at its northern and western limits. If such an ice model is extreme and incompatible with glaciological observations then the alternative is to accept the interpretation of the Irish Sea Drift as terrestrial in origin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, Milkov and Sassen’s model is selected to calculate the thickness of the gas hydrate stable zone (GHSZ) and the amount of gas hydrate in the Xisha (西沙) Trough at present and at the last glacial maximum (LGM), respectively, and the effects of the changes in the bottom water temperature and the sea level on these were also discussed. The average thickness of the GHSZ in Xisha Trough is estimated to be 287 m and 299 m based on the relationship between the GHSZ thickness and the water depth established in this study at present and at LGM, respectively. Then, by assuming that the distributed area of gas hydrates is 8 000 km2 and that the gas hydrate saturation is 1.2% of the sediment volume, the amounts of gas hydrate are estimated to be ~2.76×1010 m3 and ~2.87×1010 m3, and the volumes of hydrate-bound gases are ~4.52×1012 m3 and ~4.71×1012 m3 at present and at LGM, re- spectively. The above results show that the thickness of GHSZ decreases with the bottom water tem- perature increase and increases with the sea level increase, wherein the effect of the former is larger than that of the latter, that the average thickness of GHSZ in Xisha Trough had been reduced by ~12 m, and that 1.9×1011 m3 of methane is released from approximately 1.1×109 m3 of gas hydrate since LGM. The released methane should have greatly affected the environment.  相似文献   

7.
Through a multidisciplinary approach based on novel micropaleontological and geochemical analyses, the main paleoceanographic and paleoclimate changes that have influenced the surface‐ and deep‐water circulation in the SW Pacific Ocean (Chatham Rise, eastern New Zealand) during the last million years are reconstructed. This region represents a key area for investigating the climate evolution during the Pleistocene because here the largely wind‐driven Antarctic Circumpolar Current interacts with the west Pacific Ocean circulation via the Deep Western Boundary Current, the major source of deep water for the whole Pacific Ocean. To understand coupling or decoupling events between sea surface and bottom waters, a continuous marine sedimentary succession since 1.1 Ma, recovered by the IMAGES (International Marine Past Global Change Study) cruise in the SW Pacific Ocean (Core MD97‐2114), has been investigated based on calcareous planktonic and benthic microfossil content and C and O isotope record performed on planktonic and benthic foraminiferal tests. Results show the occurrence of long‐ and short‐term patterns of climate and ocean circulation in the last million years as the result of the interplay of ice‐sheet dynamics, surface tropical versus polar water inflow, and trophic status of the surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
利用Milkov和Sassen的模型计算了目前及末次盛冰期时西沙海槽天然气水合物的稳定带(GHSZ) 厚度及资源量, 讨论了末次盛冰期以来海洋底水温度增加和海平面升高对西沙海槽天然气水合物储库变化的影响.计算结果表明, 底水温度增加使GHSZ厚度减薄, 资源量减少; 而海平面上升使GHSZ厚度增加, 资源量增加, 但底水温度变化对GHSZ厚度和资源量的影响比海平面变化的影响更大.西沙海槽末次盛冰期时GHSZ平均厚度约为299m, 天然气水合物资源量约为2.87×1010m3, 甲烷数量约为4.71×1012m3; 目前的GHSZ平均厚度约为287m, 天然气水合物资源量约为2.76×1010m3, 甲烷数量约为4.52×1012m3.由此可见, 自末次盛冰期以来西沙海槽的GHSZ平均厚度减薄了~12m, 大约1.1×109m3的天然气水合物分解释放了1.9×1011m3的甲烷, 这些甲烷可能对环境产生了重要影响.   相似文献   

9.
Process length variation of cysts of the dinoflagellate Protoceratium reticulatum (Claparède et Lachmann) Bütschli in surface sediments from the North Pacific was investigated. The average process length showed a significant inverse relation to annual seawater density: σt annual = ?0.8674 × average process length + 1029.3 (R2 = 0.84), with a standard error of 0.78 kg m?3. A sediment trap study from Effingham Inlet in British Columbia revealed the same relationship between average process length and local seawater density variations. In the Baltic–Skagerrak region, the average process length variation was related significantly to annual seawater density: σt annual = 3.5457 × average process length ? 993.28 (R2 = 0.86), with a standard error of 3.09 kg m?3. These calibrations cannot be reconciled, which accentuates the regional character of the calibrations. This can be related to variations in molecular data (small subunit, long subunit and internal transcribed spacer sequences), which show the presence of several genotypes and the occurrence of pseudo‐cryptic speciation within this species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The analysis of cores collected in northernmost Baffin Bay, from within the area of the North Water Polynya, permits definition of a composite sedimentary sequence ca. 12 m thick spanning the last 10 000 14C yr, with only a few discontinuities. Palynological analyses were performed in order to reconstruct changes in surface water conditions and biogenic production. Transfer functions, using dinocyst assemblages, were applied to estimate sea‐surface temperature (SST) and salinity, as well as the seasonal duration of sea ice cover. At the base of the record, prior to 9300 14C yr BP, dinocysts and organic linings of benthic foraminifers are sparse, indicating harsh conditions and low productivity. After ca. 9300 14C yr BP, the increased concentration of benthic foraminifers (up to 103 linings cm?3) and dinocyst fluxes (102–103 cysts cm?2 yr?1) reveals high biological productivity related to open‐water conditions. The early to middle Holocene, from ca. 9000 to ca. 3600 14C yr BP, is marked by relatively high species diversity in dinocyst assemblages and the significant occurrence of autotrophic taxa such as Spiniferites elongatus, Pentapharsodinium dalei and Impagidinium pallidum. This assemblage suggests conditions at least as warm as at present. From ca. 6400 to ca. 3600 14C yr BP, transfer functions indicate warmer conditions than at present, with SST in August fluctuating up to 5.5°C. After 3600 14C yr BP, the dinocyst record suggests a trend of decreasing temperature toward modern values, marked by recurrent cooling events. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐resolution diatom record from site MD05‐2908 in the Southern Okinawa Trough, East China Sea, reveals pronounced multidecadal‐ to centennial‐scale palaeoceanographic changes throughout the last millennium. Summer sea‐surface salinity (SSS) was reconstructed using a weighted averaging partial least squares diatom‐based training set. The reconstructed SSS shows slightly decreasing values during the period AD 905–1930 with considerable fluctuations superimposed on this general trend. Relatively high‐salinity conditions during the interval AD 905–1450 probably suggest a low flood frequency in north‐eastern Taiwan. Furthermore, the high SSS values are associated with a strong and stable influence of the Kuroshio Current on the Southern Okinawa Trough during the Medieval Climate Anomaly. The period AD 1450–1930 is characterized by three low‐salinity intervals (AD 1450–1500, AD 1625–1725 and AD 1770–1880) separated by periods of relatively high salinity. The low SSS intervals indicate increased freshwater discharge into the Southern Okinawa Trough during the Little Ice Age, probably as a result of higher flood frequencies in north‐eastern Taiwan. Spectral and wavelet analyses suggest that this pattern was linked to multidecadal variations in summer SSS, presumably associated with the Pacific Decadal Oscillation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Observations of relative sea‐level change and local deglaciation in western Scotland provide critical constraints for modelling glacio‐isostatic rebound in northern Britain over the last 18 000 years. The longest records come from Skye, Arisaig and Knapdale with a shorter, Holocene, record from Kintail. Biostratigraphic (diatom, pollen, dinoflagellate, foraminifera and thecamoebian), lithological and radiocarbon analyses provide age and elevation parameters for each sea‐level index point. All four sites reveal relative sea‐level change that is highly non‐monotonic in time as the local vertical component of glacio‐isostatic rebound and eustasy (or global meltwater influx) dominate at different periods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea‐surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2–3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice‐core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
The precipitation fields of a palaeoatmospheric general circulation model are used to derive estimates of the geographical distribution, and flux, of icebergs from the Laurentide, Fennoscandinavian and eastern Siberian ice‐sheets at the Last Glacial Maximum (LGM). The atmospheric model fields from LGM simulations using CLIMAP or Peltier (ICE‐4G) ice orography were studied, to test the sensitivity of the predicted flux. The estimated Northern Hemispheric LGM iceberg flux is 3500–4000 km3 yr?1, of which about 60% issued directly into the North Atlantic. The iceberg flux from the St Lawrence area is of similar significance to that issuing from Hudson Strait in all estimates. Both the North Pacific and the Arctic received substantial iceberg fluxes (ca. 700 km3 yr?1), with relatively minor differences occurring between the two ice‐sheet reconstructions. Apparent discrepancies between Arctic deep‐sea core samples of ice‐rafted debris and our estimates of mean glacial iceberg flux may be ascribed to coastal trapping of bergs, the existence of floating ice tongues or a rapid exit of icebergs from the Arctic basin into the Greenland Sea through the Fram Strait. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   

19.
20.
The Holocene sediment of Lago Piccolo di Avigliana (Piedmont, Italy, 356 m a.s.l.) was dated by 14C and analysed for pollen to reconstruct the vegetation history of the area. The early‐ and mid‐Holocene pollen record shows environmental responses to centennial‐scale climatic changes as evidenced by independent palaeoclimatic proxies. When human impact was low or negligible, continental mixed‐oak forests decreased at ca. 9300 BC in response to the early‐Holocene Preboreal climatic oscillation. Abies alba expanded in two phases, probably in response to higher moisture availability at ca. 6000 and ca. 4000 BC , while Fagus expanded later, possibly in response to a climatic change at 3300 BC . During and after the Bronze Age five distinct phases of intensified land use were detected. The near synchroneity with the land‐use phases detected in wetter regions in northern and southern Switzerland points to a common forcing factor in spite of cultural differences. Increasing minerogenic input to the lake since 1000 BC coincided with Late Bronze—Iron Age technical innovations and probably indicate soil erosion as a consequence of deforestation in the lake catchment. The highest values for cultural indicators occurred at 700–450 and at 300–50 BC , coinciding with periods of high solar activity (inferred from Δ14C). This suggests that Iron Age land use was enhanced by high solar activity, while re‐occupation of partly abandoned areas after crises in earlier periods match better with the GRIP stable isotope record. On the basis of our data and comparison with independent palaeoclimatic proxies we suggest that precipitation variation was much more important than temperature oscillations in driving vegetation and societal changes throughout the Holocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号