首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
I. Haag  B. Westrich 《水文研究》2002,16(16):3113-3130
The present study demonstrates the usefulness of principal component analysis in condensing and interpreting multivariate time‐series of water quality data. In a case study the water quality system of the lock‐regulated part of the River Neckar (Germany) was analysed, with special emphasis on the oxygen budget. Pooled data of ten water quality parameters and discharge, which had been determined at six stations along a 200 km reach of the river between the years 1993 and 1998, were subjected to principal component analysis. The analysis yielded four stable principal components, explaining 72% of the total variance of the 11 parameters. The four components could be interpreted confidently in terms of underlying processes: biological activity, dilution by high discharge, seasonal effects and the influence of wastewater. From analysing the data of single stations separately, these processes were found to be active throughout the complete reach. Considering the oxygen budget of the river, the variance of biological activity, representing the counteracting processes of primary production and microbial degradation, was found to be most important. This principal component explained 79% of the observed variance of oxygen saturation. In contrast, the analysis of a reduced data set from the 1970s showed that oxygen saturation was then dominated by discharge and temperature variations. The findings indicate that the oxygen budget used to be governed directly by the emission of degradable matter, whereas nowadays eutrophication is most important for extreme oxygen concentrations. Therefore, controlling eutrophication has to be the primary goal, in order to mitigate the rare episodes of pronounced oxygen over‐ and undersaturation in the future. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The influence of land use patterns on water quality in a river system is scale‐dependent. In this study, a four‐order hierarchical arrangement method was used to select water sampling sites and to delineate sub‐basins in the Daliao River Basin, China. The 20 sub‐basins were classified into four spatial scales that represented four different stream orders. Pearson correlation analysis was used to quantify relationships between land use composition and the river's physical‐chemical variables for all samples collected. This analysis showed that the presence of forest cover was associated with higher water quality at the scale of the whole basin. The scale effects of land use patterns on water quality were then examined using stepwise multiple regression analysis that compared different land use types with water quality variables. The results from this analysis showed that urban areas, as opposed to forest areas, became the most significant contributors of water pollutants when scale effects were considered. The influence of urban land cover on water pollution was significantly higher at larger scales. The lack of a significant regression correlation for the forest land use type at smaller scales revealed that forest located upstream of the Daliao River Basin did not provide a buffer for improved water quality. Further analysis showed that this result could be because of disproportionate spatial distributions for forest and urban land use types. The topographic characteristics of sub‐basins, such as average slope (S) and size (A), were determined to be secondary explanatory variables that affected land use impacts on stream water quality. Areas with steep slopes were associated with increased water oxygenation, whereas areas with flatter slopes were associated with higher concentrations of pollutants. These results are significant because they can provide a better understanding of the appropriate spatial scale required for effective river basin management in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
以艾比湖流域主要入湖河流为研究对象,在5月(丰水期)和8月(枯水期)分别沿博尔塔拉河(博河)和精河进行采样,采用平行因子模型(PARAFAC)和三维荧光区域积分法对水体三维荧光特性进行研究并对其与水质的关系在枯、丰水期下的变化进行探讨.结果表明①河流DOM在枯水期与丰水期都含有C1(240、425 nm) UVC类腐殖质,C2(225、290 nm)紫外区内络氨酸类有机物,C3(230/280、330 nm)蛋白类有机物,C4(265、260 nm)腐殖质类共4种组分.通过对水体三维荧光进行区域积分可以看出DOM荧光成分的占比在不同时期的变化.博河在枯水期时EEM光谱中的区域Ⅲ富里酸含量低于丰水期,枯水期时区域Ⅱ芳香类蛋白质、区域Ⅳ可溶性微生物代谢物以及区域Ⅴ类腐殖质酸高于丰水期;对于精河来说,区域Ⅱ芳香类蛋白质和区域Ⅳ可溶性微生物代谢物在枯水期的含量高于丰水期,区域Ⅲ富里酸和区域Ⅴ类腐殖质酸的含量枯水期低于丰水期,这表明水体腐质化程度较高.②本研究选取了一些常规的荧光指数来描述枯、丰水期水体的荧光指数特性.经研究发现,精河的荧光指数、自生源指数和腐殖化指数在不同时期的变化幅度较小,而博河的变化幅度较大.③将荧光指数与水质参数进行相关性分析并建模,结果表明枯水期自生源指数(BIX)与化学需氧量呈显著正相关,相关系数R=0.688;丰水期时BIX与铵态氮浓度呈显著负相关,相关系数R=-0.493.通过对比分析艾比湖主要入湖河流的三维荧光光谱特性与水质在枯、丰水期时的关系进一步表明水体中DOM的特性以及在枯、丰水期下的差异,为艾比湖流域的治理改善提供一定的理论支持和参考依据.  相似文献   

4.
Riverbank filtration (RBF) has been widely used throughout the world as an effective means to regulate surface water and groundwater resources and pretreat raw water for municipal water supply. The quality of the water from a riverside well field and the mixing ratios of surface water and groundwater is primarily impacted by the hydrodynamic processes in the RBF system. The RBF system is largely controlled by the water exploiting system in addition to the natural hydrologic condition of the river–aquifer system. As one of the most important design parameters of the riverside well field, the drawdown of groundwater level greatly determines the water head differences between the river water and groundwater as well as the field flow net, which subsequently impacts the mixing of river water and groundwater and water quality significantly. This study aimed to improve the understanding of the mixing process between the surface water and groundwater and estimate the impact of the RBF on the mixing ratio of surface water–groundwater and water quality quantitatively. A set of field pumping tests with various groundwater level drawdowns were carried out independently and successively at a riverside field with a single pumping well near the Songhua River in Northeast China in August 2017. During these tests, the water levels and hydrochemical parameters of the Songhua River, the adjacent aquifer, and the pumping well were monitored. The dynamic mixing process of the river water and groundwater and water quality under various drawdown conditions were analysed systematically using analytical methods. The results obtained from Dupuit method and the Mirror Image method in conjunction with the Hydrochemical Tracing method showed that the pumping water directly from the river water reached 60% ± 10% after a steady flow net was established. The larger the proportion of the pumping water captured from the river, the better quality of the pumping water was, because the quality of the river water (only limited to some water quality parameters monitored which were minority) was better than that of the groundwater. The results also showed that total Fe, TDS, total hardness, CODMn, and K+ were relatively sensitive to the changes of groundwater drawdown, and their concentrations decreased with an increase in the groundwater drawdown. It can be concluded that both the mixing ratio of the surface water and the groundwater and the water quality of the riverside well field can be regulated through adjusting the designed drawdown of the groundwater level, which is helpful for the design and the optimization of the riverside well water intake engineering.  相似文献   

5.
S. Rehana  P. P. Mujumdar 《水文研究》2011,25(22):3373-3386
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low‐flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga‐Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A back‐propagation algorithm neural network (BPNN) was developed to synchronously simulate concentrations of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen (DO) in response to agricultural non‐point source pollution (AGNPS) for any month and location in the Changle River, southeast China. Monthly river flow, water temperature, flow travel time, rainfall and upstream TN, TP and DO concentrations were selected as initial inputs of the BPNN through coupling correlation analysis and quadratic polynomial stepwise regression analysis for the outputs, i.e. downstream TN, TP and DO concentrations. The input variables and number of hidden nodes of the BPNN were then optimized using a combination of growing and pruning methods. The final structure of the BPNN was determined from simulated data based on experimental data for both the training and validation phases. The predicted values obtained using a BPNN consisting of the seven initial input variables (described above), one hidden layer with four nodes and three output variables matched well with observed values. The model indicated that decreasing upstream input concentrations during the dry season and control of NPS along the reach during average and flood seasons may be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data are available, the methodology developed here can easily be applied to other case studies. The BPNN model is an easy‐to‐use modelling tool for managers to obtain rapid preliminary identification of spatiotemporal water quality variations in response to natural and artificial modifications of an agricultural drainage river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Synoptic water sampling at a fixed site monitoring station provides only limited ‘snap‐shots’ of the complex water quality dynamics within a surface water system. However, water quality often changes rapidly in both spatial and temporal dimensions, especially in highly polluted urban rivers. In this study, we designed and applied a continuous longitudinal sampling technique to monitor the fine‐scale spatial changes of water quality conditions, assess water pollutant sources, and determine the assimilative capacity for biochemical oxygen demand (BOD) in an urban segment of the hypoxic Wen‐Rui Tang River in eastern China. The continuous longitudinal sampling was capable of collecting dissolved oxygen (DO) data every 5 s yielding a ~11 m sampling interval with a precision of ±0.1 mg L?1. The Streeter and Phelps BOD‐DO model was used to calculate: (1) the oxygen consumption coefficient (K1) required for calibration of water quality models, (2) BOD assimilative capacity, and (3) BOD source and load identification. In the 2014 m river segment sampled, the oxygen consumption coefficient (K1) was 0.428 d?1 (20°C), the total BOD discharge was 916 kg d?1, and the BOD assimilative capacity was 382 kg d?1 when the minimum DO level was set to 2 mg L?1. In addition, the longitudinal analysis identified eight major drainage outlets (BOD point sources), which were verified by field observations. This new approach provides a simple, cost‐effective method of evaluating BOD‐DO dynamics over large spatial areas with rapidly changing water quality conditions, such as urban environments. It represents a major breakthrough in the development and application of water quality sampling techniques to obtain spatially distributed DO and BOD in real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Mathematical relationships have been developed for reaeration rate coefficient (Ka) by various researchers. These relationships have a number of variables such as depth, velocity, width, slope, Froud number, molecular diffusion coefficient, kinematic viscosity and the gas‐transfer Reynolds number. From these variables, 29 relations have been developed and divided into four groups. To evaluate their predictive capability for highly variable flow rivers receiving high pollution loads form large cities, these relationships have been used to model dissolved oxygen (DO) in the River Ravi. Such rivers are either saturated with DO during high flows or anaerobic during critical low‐flow conditions. The evaluation is based on the agreement between model DO values calculated using Ka obtained from the available equations and the measured DO concentrations in the river samples in terms of sum of square of residuals (SSR) and coefficient of determination (R2). It has been found that in general, the group of equations containing depth and velocity as the only two variables affecting Ka performed better than the equations in other groups as reflected by lower SSR and higher R2 values. The study results also reveal that the turbulence‐based reaeration rate coefficient equation containing additional variables also resulted in close agreement between DO model results and the measured values. The study results identify the most important parameters affecting the reaeration rate coefficient and the suitability of various Ka relationships as well for rivers with highly variable flows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The water quality of urban drainage ditches in lowlands in the Rhine‐Meuse delta was analysed with principal component analysis (PCA) during a dry period and a rain storm, and related to the seepage of polluted river water and effective impervious area (EIA). This was done in order to test the hypothesis that seepage of river water and storm water runoff from impervious areas strongly determine the water quality of urban drainage systems along large lowland rivers. Our analysis revealed that upward seepage of groundwater originating from rivers Rhine and Meuse was positively correlated with nitrate, potassium, sodium and chloride and negatively correlated with alkalinity, calcium, magnesium and iron. EIA was correlated with very few environmental variables (i.e. phosphate, pH and iron in the dry period and iron during the rain storm). Nickel and zinc concentrations generally exceeded the maximum allowable concentrations (MAC), while lead and phosphorus concentrations were just above the nutrient standards and MAC in a few locations during the rain storm. To optimize water quality in urban water systems, attention should be paid to all sources of pollution and not only to EIA. The impact of local groundwater seepage originating from large rivers in lowlands on the chemistry of urban water systems is often underestimated and should be taken into account when assessing water quality and improving water quality status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Pond‐cypress (Taxodium ascendens Brong.) is a dominant canopy species in depressional wetlands of the south‐eastern Coastal Plain. Unsustainable withdrawals from the karst Floridan aquifer system have caused premature decline and death of pond‐cypress trees, presumably owing to altered hydroperiods (which alter the flow of water and nutrients in trees). There has been no scientifically based means to determine sustainable yield from this regional aquifer system or to detect early stages of physical/ecological damage associated with groundwater mining and aquifer storage and recovery (ASR, which also can alter natural hydroperiods). In this study, the relationship between visual symptoms (indicators) of stress or premature decline, and spectral reflectance was evaluated using dried, milled branch tips collected from natural stands of mature pond‐cypress. Depressional systems evaluated represented four of the six aquifer system subregions where subsurface perturbations from groundwater mining: (i) were presumed not to be occurring (reference wetlands); (ii) may be occurring but are not documented; and (iii) have been confirmed. Sampled trees were assigned to one of three stress classes (1, no/minimal; 2, moderate; 3, severe) based on the visual indicators. Partial least squares–linear discriminant analysis of second derivative spectral transformations in the visible/shortwave near‐infrared (NIR) region (400–1100 nm) and the NIR region (1100–2500 nm) was used to evaluate the samples in assigned classes. Class 1 samples were discriminated from combined class 2 and 3 samples in the NIR region with 100% and 97% accuracy for consecutive winter sample periods (before bud‐break). The percentage of correctly classified samples in this spectral region was lower (85%) for summer samples (full leaf‐out). Second‐derivative models for the NIR region developed from the winter data sets predicted assigned classes for alternate winter's samples with an accuracy of 97% and 100%. High correlation between spectral reflectance of dried, milled branch tips collected from mature pond‐cypress in winter and visual indicators of premature decline suggests in situ pond‐cypress are hydroecological indicators of anthropogenic subsurface hydroperiod perturbations. This approach provides objective means for early detection of unsustainable aquifer yield and adverse impacts from ASR activities in the south‐eastern Coastal Plain. Used in conjunction with hydrological monitoring and modelling, the hydroecological indicators should provide the means with which sustainable yield in the south‐eastern Coastal Plain can be achieved and maintained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号