首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A possible mechanism for the generation of a reverse fast shock in the magnetosheath in the solar wind flow around the Earth’s magnetosphere is considered. It is shown that such a shock can emerge through the breaking of a nonlinear fast magnetosonic compression wave reflected from the magnetopause toward the bow shock rear. In this case, the magnetopause is represented as a tangential discontinuity with a zero normal magnetic field component at it and the mechanism under consideration is assumed to be secondary with respect to the sudden disturbance of the bow shock-Earth’s magnetosphere system by a nonstationary solar wind shock. A possible confirmation of the process under study by in-situ SC3 experimental observations of the bow shock front motion on the Cluster spacecraft is pointed out.  相似文献   

2.
We have studied the H+ velocity distribution function at Mars and Venus near the bow shock both in the solar wind and in the magnetosheath by a simple analytical one-dimensional model. We found that over half of the ions in the ring velocity distribution which moved towards the magnetosheath were scattered back into the bow shock. The original ring distribution is destroyed in less than an ion gyro period. Ions contained in the magnetosphere which hit the bow shock bounce back into the solar wind with a maximum energy exceeding twice the energy of solar wind protons. The ions finite gyroradius causes an asymmetric flow in the magnetosheath with respect to the direction of the convective electric field, which can be observed already a few ion gyroradius downstream of the bow shock.  相似文献   

3.
A theoretical model is proposed for the interaction of a plane discontinuity in the solar wind with the magnetosphere. The presence of the bow shock and magnetosheath are taken into account, the calculation being based on the Spreiter et al. (1966) gas-dynamic model for a solar wind Mach Number M = 5. The model proposed predicts the manner in which the shape of the interplanetary discontinuity is distorted in its passage through the magnetosheath; it is found that the point of first impact with the magnetopause makes an angle of 56° with the Sun-Earth line for relatively quiet solar wind conditions.  相似文献   

4.
On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind‐magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X‐ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X‐ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X‐ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
C. -C. Wu  S. T. Wu  M. Dryer 《Solar physics》2004,223(1-2):259-282
We use a one-dimensional, time-dependent adaptive grid MHD code to study the interaction between fast and slow shocks in the solar wind. Our results show that: (1) a forward slow shock (FSS) can be destroyed by a forward fast shock (FFS) that overtakes it from behind; (2) two propagating FSSs can merge into a stronger FSS; (3) a strong FSS can survive by following a strong forward fast shock; and (4) the strength of a FSS is decreased by following an FFS. These simulation results reproduce an important feature of the Helios observations (Richter, 1987) where transient fast shocks were more frequently followed within a few hours by slow shock ype discontinuities rather than by fast reverse shocks.  相似文献   

6.
Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.  相似文献   

7.
We use a one-dimensional, time-dependent adaptive grid MHD code to study the interaction between fast and slow shocks in the solar wind. Our results show that: (1) a forward slow shock (FSS) can be destroyed by a forward fast shock (FFS) that overtakes it from behind; (2) two propagating FSSs can merge into a stronger FSS; (3) a strong FSS can survive by following a strong forward fast shock; and (4) the strength of a FSS is decreased by following an FFS. These simulation results reproduce an important feature of the Helios observations (Richter, 1987) where transient fast shocks were more frequently followed within a few hours by slow shock ype discontinuities rather than by fast reverse shocks.  相似文献   

8.
In June 2006 Venus Express crossed several times the outer boundary of Venus induced magnetosphere, its magnetosheath and its bow shock. During the same interval the Cluster spacecraft surveyed the dawn flank of the terrestrial magnetosphere, intersected the Earth's magnetopause and spent long time intervals in the magnetosheath. This configuration offers the opportunity to perform a joint investigation of the interface between Venus and Earth's outer plasma layers and the shocked solar wind. We discuss the kinetic structure of the magnetopause of both planets, its global characteristics and the effects on the interaction between the planetary plasma and the solar wind. A Vlasov equilibrium model is constructed for both planetary magnetopauses and provides good estimates of the magnetic field profile across the interface. The model is also in agreement with plasma data and evidence the role of planetary and solar wind ions on the spatial scale of the equilibrium magnetopause of the two planets. The main characteristics of the two magnetopauses are discussed and compared.  相似文献   

9.
Forecasting space weather more accurately from solar observations requires an understanding of the variations in physical properties of interplanetary (IP) shocks as solar activity changes. We examined the characteristics (occurrence rate, physical parameters, and types of shock driver) of IP shocks. During the period of 1995 – 2001, a total of 249 forward IP shocks were observed. In calculating the shock parameters, we used the solar wind data from Wind at the solar minimum period (1995 – 1997) and from ACE since 1998 including the solar maximum period (1999 – 2001). Most of IP shocks (68%) are concentrated in the solar maximum period. The values of physical quantities of IP shocks, such as the shock speed, the sonic Mach number, and the ratio of plasma density compression, are larger at solar maximum than at solar minimum. However, the ratio of IMF compression is larger at solar minimum. The IP shock drivers are classified into four groups: magnetic clouds (MCs), ejecta, high speed streams (HSSs), and unidentified drivers. The MC is the most dominant and strong shock driver and 150 out of total 249 IP shocks are driven by MCs. The MC is a principal and very effective shock driver not only at solar maximum but also at solar minimum, in contrast to results from previous studies, where the HSS is considered as the dominant IP shock driver.  相似文献   

10.
The interaction of traveling fast solar shock waves with other fast shock waves generated previously is considered in terms of magnetohydrodynamics for various solar wind parameters. The shocks are not piston ones and move freely in the flow. The magnetic structure in the interplanetary magnetic field emerging after the shock interaction is shown to correspond to the well-known magnetic configuration commonly observed on spacecraft or the classical Hundhausen R model. A head-on collision of solar shock waves with the boundary of a magnetic cloud is considered. It is pointed out that a slow shockwave refracted into the magnetic cloud can appear at an oblique collision of the shock with the cloud boundary. The results clarify our understanding of the available spacecraft data.  相似文献   

11.
Farrugia  C. J.  Harris  B.  Leitner  M.  Möstl  C.  Galvin  A. B.  Simunac  K. D. C.  Torbert  R. B.  Temmer  M. B.  Veronig  A. M.  Erkaev  N. V.  Szabo  A.  Ogilvie  K. W.  Luhmann  J. G.  Osherovich  V. A. 《Solar physics》2012,281(1):461-489

We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007?–?2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfvén Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind–magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3±0.9 mV?m?1 and a CPCP of 37.3±20.2 kV. The auroral activity is closely correlated to the prevalent stream–stream interactions. We suggest that the Alfvén wave trains in the fast streams and Kelvin–Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield’s (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R E and 14.35 R E, respectively. When comparing with Fairfield’s (1971) classic result, we find that the subsolar magnetosheath is thinner by ~1 R E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield’s model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

  相似文献   

12.
The energization of positive ions in front of a cometary bow shock is investigated. Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce, among other waves, large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading) ; hence, they can energize the suprathermal ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting ion energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind, such that the cometary bow shock of Halley-type comet may be regarded as a “cosmic ray shock”.  相似文献   

13.
The interaction of a rotational (plane-polarized) discontinuity A of the solar wind with the Earth's bow shock S b is studied in the parametric form. The velocity of displacement of the bow shock is estimated. An asymmetry of the impact on the flanks of S b and an appreciable contribution of slow MHD waves to the process considered are revealed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars flyby on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.  相似文献   

15.
The solution of the classical problem of two-dimensional magnetohydrodynamic (MHD) interaction between two shocks (the angle between the interacting shocks and the slope of the magnetic field are arbitrary) obtained by Pushkar' (1995) is applied to the problem of interaction between interplanetary shocks and the solar wind termination shock (TS). The self-consistent kinetic-gasdynamic model of solar wind interaction with the supersonic flow of a three-component (electrons, protons, and hydrogen atoms) interstellar medium developed for the axisymmetric, steady-state case by Baranov and Malama (1993) is used as the stationary background against which the physical phenomenon under consideration takes place. The main physical process in this model is the resonant charge exchange between protons and hydrogen atoms. This paper is a natural continuation of our previous papers (Baranov et al. 1996a, 1996b). However, whereas attention in these papers was focused on the TS interaction with an interplanetary forward shock moving away from the Sun, here we consider the TS interaction with an interplanetary reverse shock (RS) moving toward the Sun with a velocity lower than the solar-wind velocity. We show that the TS-RS interaction can give rise to a new TS' that moves toward the Sun, i.e., toward Voyager 1 and Voyager 2. This phenomenon may be responsible for the unexpected suggestion made by some of the scientists that Voyager 1 already crossed TS in the past year. This conclusion was drawn from the interpretation of the intensity, energy spectra, and angular distributions of ions in the energy range from 10 keV to 40 MeV measured from this spacecraft. Our results show that Voyager 1 could cross TS' rather than TS.  相似文献   

16.
In the present study, we investigate the possible relationship of IP parameters of solar wind and interplanetary magnetic field with ground-based geomagnetic indices. To carry out the study, we take all the IP shock events listed by Proton Monitor onboard Solar and Heliospheric Observatory (SOHO) during 2005, and plot the time variations of all the IP parameters and geomagnetic parameters (±5 days), centered at the shock arrival time. Next, we obtain scatter plots of absolute values of solar wind parameters such as Vsw, Nsw and Interplanetary Magnetic Field (IMF) components Bx, By, Bz and total B with the values of geomagnetic parameters such as Dst, Kp indices, dayside Magnetopause (MP) distance and Cosmic-Ray Neutron Monitor count (CRNM). The scatter plots show that before the IP shock, the pattern is random with no clear relationship. Following the shock, a clear pattern emerges with a type of relationship being seen — clear for SHARP shocks and less clear for DIFFUSE shocks. A total of 10 shock events for 2005 have been studied. Typical examples of this behaviour are the shock events of January 21, 2005 and May 15, 2005. Our study suggests a definite correlation between changes in the solar wind and interplanetary magnetic field parameters and ground-based geomagnetic response. We are trying to obtain quantitative relationships between these for shock events of 2005.  相似文献   

17.
AXIOM (Advanced X‐ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide‐field soft X‐ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X‐ray emission from the interaction of high charge‐state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near‐interplanetary space (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The generation of low-frequency waves in the solar wind by the flux of protons accelerated in the magnetosheath is considered. It is shown that pulsations are produced in two partly overlapping frequency ranges. The growth rate of waves is maximal when the angle θ between the direction of the interplanetary magnetic field and the front of the bow shock is not equal π2. The dependence of the increment of perturbation on the solar wind velocity is analysed. A satisfactory agreement between theory and experimental results on the connection of Pc3–4 properties and parameters of the solar wind is obtained.  相似文献   

19.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

20.
Predicting the Arrival Time of Shock Passages at Earth   总被引:1,自引:0,他引:1  
The purpose of this parametric study is to predict the arrival time at Earth of shocks due to disturbances observed on the Sun. A 3D magnetohydrodynamic (MHD) simulation code is used to simulate the evolution of these disturbances as they propagate out to 1 AU. The model in Han, Wu and Dryer (1988) uses solar data for input at 0.08 AU (18 solar radii). The initial shock speed (ISS) is assumed to be constant from the corona to 0.08 AU. We investigate how variations of this ISS affect the arrival times of the shock at Earth. This basic parametric study, however, does not consider inhomogeneous background solar wind structures such as corotating interaction regions and their precursor stream–stream interactions, nor interplanetary manifestations of complex coronal mass ejecta such as magnetic clouds. In the latter case, only their associated shocks are considered. Because the ambient (pre-existing background) solar wind speed is known to affect the shock arrival time at 1 AU, we also simulated events with various background solar wind speeds (BSWS) to investigate this effect. The results show that the shock arrival time at Earth depends on the BSWS, the speed of solar disturbances, their size, and their source location at the Sun. However, it is found that for a sufficiently large momentum input, the shock arrival time at Earth is not significantly affected by the pre-existing solar wind speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号