首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Absorption spectra, particulate pigments, and hydrochemical constituents were measured in the western Bay of Bengal (BoB) during July-August 2010 when influence of river discharge is at peak. Chromophoric dissolved organic matter (CDOM) absorption coefficient (aCDOM(440)) displayed a significant inverse linear relationship with salinity in the surface waters implying conservative mixing of marine and terrestrial end members. The northern part of the study area is influenced by discharge from the river Ganga and a dominant terrestrial CDOM signal is seen. The southern part receives discharge from peninsular rivers with corresponding signals of higher CDOM than the linear model would indicate and higher UV-specific absorption coefficient (SUVA) indicating more aged and humified DOM. Lower contribution of CDOM to total non-water absorption and higher phytoplankton biomass (chlorophyll a absorption coefficient, aph(440)) but lower chlorophyll a specific phytoplankton absorption coefficient (a ph * (440)) characterize the northern part, compared to the southern part. Chlorophyll b had a distinct linear relationship with chlorophyll a in the latter. The size index (SI) indicated dominance of microphytoplankton in the northern and nano and picophytoplankton in the southern parts. Chlorophyll a is significantly related to a ph * (440) by an inverse power model in the northern part but by an inverse linear model in the southern part. Our study suggests that knowledge of the phytoplankton community structure is essential to improve chlorophyll a algorithm in the coastal Bay of Bengal.  相似文献   

3.
From 15 to 28 August in 2007, a Chaetoceros socialis bloom was detected in the Pearl River Estuary water with chlorophyll a concentration (Chl a) up to 30 mg m−3 and cell density up to 106 cells L−1. Time series of bio-optical measurements was obtained at a single site (114.29°E, 22.06°N) with the mooring of marine optical buoy. Light absorption properties of seawater experienced large variability throughout the algal bloom. Absorption by colored dissolved organic matter (CDOM) was one of the dominant optical components of the light absorption (30–70%) especially for pre- and post-bloom waters, and it tended to decrease with Chl a during the algal bloom. Absorption by phytoplankton was another dominant optical component (18–50%) and increased rapidly with Chl a. Phytoplankton and accompanying material played dominant roles in light absorption as indicated by the relationship between absorption coefficient and Chl a. At high pigment concentrations, water samples showed significantly lower specific phytoplankton absorption, compared with pre- and post-bloom conditions, with the specific phytoplankton concentration at 443 nm varied between 0.011 and 0.022 m2 mg−1 and that at 676 nm between 0.007 and 0.018 m2 mg−1; small values of blue-to-red ratio of phytoplankton were also observed. These lower values were associated with variations in phytoplankton size structure. Spectral variability of phytoplankton absorption and total absorption (not including the fixed background absorption by pure water itself) could be expressed as simple linear functions linking absorption at one wavelength to the absorption at the other wavelengths, with the slope of the relationship changing with wavelength. The absorption coefficients by non-algal particles and CDOM follow the general exponential functions with remarkably limited variability in the exponent with means of 0.0105 and 0.0166 nm−1, respectively. These spectral dependencies of absorption coefficients provide useful information for retrieving inherent optical properties from reflectance data in a remote-sensing context.  相似文献   

4.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

5.
6.
7.
We investigated the effect of high power ultrasound, at a frequency of 19 kHz, on the survival of bacteria, phytoplankton and zooplankton, in order to obtain estimates of effective exposure times and energy densities that could be applied to design of ultrasonic treatment systems for ballast water. Efficacy of ultrasonic treatment varied with the size of the test organism. Zooplankton required only 3-9s of exposure time and 6-19 J/mL of ultrasonic energy to realize a 90% reduction in survival. In contrast, decimal reduction times for bacteria and phytoplankton ranged from 1 to 22 min, and decimal reduction energy densities from 31 to 1240 J/mL. Our results suggest that stand-alone ultrasonic treatment systems for ballast water, operating at 19-20 kHz, may be effective for planktonic organisms >100 microm in size, but smaller planktonic organisms such as phytoplankton and bacteria will require treatment by an additional or alternative system.  相似文献   

8.
9.
10.
11.
从东江调水后契爷石水库的水质和浮游植物群落结构特征   总被引:1,自引:3,他引:1  
欧阳昊  韩博平 《湖泊科学》2007,19(2):204-211
本文比较了太湖梅梁湾敞水区2004年秋季渔汛期刀鲚(Coilia ectenes)和间下鱵(Hyporhamphus intermedius)的食性,同时对不同食物的重要性、选择性以及两种鱼类食物的重叠进行了分析.结果表明,秋季刀鲚、间下鱵的食物主要由浮游甲壳动物、鱼和昆虫等组成.镖水蚤中的指状许水蚤(Schmackeria inopinus)是刀鲚最重要的食物,而间下鱵最重要的食物是裸腹溞(Moina sp.),而且摄食鱼和昆虫的比例远高于刀鲚.刀鲚和间下鱵对个体较大的指状许水蚤的选择性都比较高,对个体较小、而在太湖密度很高的象鼻溞(Bosmina spp.)都表现出主动回避.刀鲚与间下鱵的食物重叠系数较高,表明对竞争比较激烈,但要完全了解这两种鱼类的竞争关系,还要对它们在太湖的分布,不同发育阶段和不同季节的摄食情况进行详细的调查研究.  相似文献   

12.
在社会经济发展和流域开发持续的背景下,砷污染已成为我国部分水体面临的重要环境问题,目前对砷污染防控的生态效应与修复效果评价仍缺乏系统识别。湖泊生态系统中浮游植物是重要的生产者,砷等重金属污染可以直接影响浮游植物生长、物种演替和初级生产力水平,浮游植物已成为指示砷污染水平及其生态效应的敏感指标。本研究以长期受到砷污染胁迫并经历污染治理的阳宗海为研究对象,设置南、中、北3个调查位点,于2015年4月-2019年12月对浮游植物和水质因子开展季节调查和空间分析,通过识别浮游植物生物量的时空分布模式与驱动因子,评价了砷污染与治理下浮游植物生物量的变化机制和生态修复效果。调查结果显示,采样期间阳宗海浮游植物以蓝藻门为主,浮游植物的生物量范围为0.7~30.4 mg/L,平均生物量在2016年最低((3.0±1.8) mg/L)、在2017年最高((10.5±8.9) mg/L)。ANOVA分析结果显示,浮游植物生物量存在显著的季节差异而空间差异不明显。相关分析结果显示,阳宗海浮游植物生物量与砷浓度和透明度呈显著负相关,而与水体温度和pH呈显著正相关。多元线性回归分析进一步显示,砷和水温是驱动阳宗海浮游植物生物量变化的显著环境因子。由此可见,在重金属污染湖泊经过修复后,水体砷遗留物的毒性效应仍然对浮游植物生长产生了明显的抑制作用,表明了水体重金属污染物可能具有长期的沉积物释放作用与持久的生态毒理效应。  相似文献   

13.
滆湖是我国长江中下游典型的浅水型湖泊,为了解其治理后浮游植物群落时空分布规律,2013年1 12月对其北部区浮游植物及环境因子进行调查.调查期间共检出浮游植物7门43属61种,春、冬季以栅藻(Scenedesmus)和小环藻(Cyclotella)为主要优势种属,夏、秋季以微囊藻(Microcystis)和颗粒直链藻(Melosira granulata)为主要优势种属,采样期间浮游植物生物量最高值为90.6 mg/L,出现在8月份,铜绿微囊藻(Microcystis aeruginosa)占绝对优势.浮游植物平均密度呈现由西向东递减的趋势,植被覆盖区低于敞水区.环境因子分析表明:总氮浓度、总磷浓度、水温是影响滆湖北部区浮游植物密度和生物量的主要因子.比较相同月份湖区内部菱角芦苇区和未治理的敞水区的平均生物量,菱角区生物量较敞水区低约72.7%~91.1%,芦苇区生物量较敞水区低约63.9%~83.7%.在8、9月湖区内敞水区暴发水华时菱角区浮游植物生物量仅为敞水区的14.6%,芦苇区为敞水区的30.3%.  相似文献   

14.
15.
澄湖隶属苏州市,面积为45km~2,平均水深1.83m,湖内水生维管束植物甚少,主要放养的鱼类有鲢、鳙等.浮游藻类计7门94属,主要的优势种有铜色微胞藻、颗粒直链藻、四尾栅列藻等.数量和生物量的季节变化均以春季最高、秋季最低.但前者以夏季次之,而后者以冬季为次之.最后就澄湖浮游藻类秋季低产的原因及对该湖鱼产潜力进行了讨论.  相似文献   

16.
A new flat embedding method is commented. This method allows embedding of the same phytoplankton sample for light and transmission electron microscopy. Rare or interesting field specimens can then be easily selected and sectioned without the need of cultures. A great range of biological material can be handled with this method.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

18.
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

19.
Daily time series of phytoplankton concentration are theoretically analyzed with the use of population dynamics equation with fluctuations in the growth factor and environmental carrying capacity taken into account. The statistical distributions of phytoplankton cell concentration are shown to obey different laws, depending on the season of the year: lognormal in the winter and logarithmic in the vegetation period. The probability of extremely high concentration numbers is described by the normal law. The verification of the obtained relationships against a body of empirical data confirmed the theoretical forecasts. The obtained results make it possible to predict the probabilities of various phytoplankton concentration values within a wide range, including the domain of large values, which are of greatest hazard in terms of water quality, water treatment processes, and aquatic ecosystem well-being.  相似文献   

20.
We present a fine vertical distribution of physico-chemical parameters and phytoplankton density around the halocline (freshwater/seawater interface) in the Krka estuary on the East coast of the Adriatic Sea. Suspended matter, surfactant activity, surface active aggregates, particulate organic carbon and phaeophytin all show largest concentrations in the 20–50 cm thick interface layer. The highest concentration of chlorophyll-a is found on the upper boundary of the interface and it is a consequence of majority of viable freshwater phytoplankton cells that accumulate there. The phytoplankton accumulates selectively in the interface: larger size fractions accumulate faster than smaller ones. In particular, nanoplanakton accumulates the least. The visible interface is also populated by dead phytoplankton cells. Most of the freshwater phytoplankton dies and decomposes in the interface, as revealed by a small chlorophyll-a/phaeophytin ratio, and it represents the main source of surface active dissolved and particulate organic matter. Marine flagellates migrate and divide in the interface, while some species likeProrocentrum micans andSyracosphera sp. are also found in the upper freshwater layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号