首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
周树荣 《天文学报》1994,35(3):333-336
在22太阳活动周中,日面上有三个较强的质子活动复活体,它们爆发峰值流量≥100pfu和≥1000pfu的质子耀斑各占同类耀斑总数的70.4%和83.3%。活动复活体分别位于北纬26°─35°和南纬20°─29°纬度带上,由于它们周期性(1─2.6年)地再现,从而形成了日面质子耀斑的活动经度和纬度明显集中趋势。  相似文献   

2.
依据卫星和地面的观测数据,分析了峰值流量达到或超过10 000 pfu(1 pfu=1proton.cm~2.s~(-1).sr~(-1))的超强太阳质子事件相伴的太阳耀斑、曰冕物质抛射(CME)驱动激波的曰地传播速度、源区的曰面经度、卡林顿经度以及相伴的磁暴等现象.研究表明,超强太阳质子事件源区的曰面经度范围为E30°Longitude≤W75°.超强太阳质子事件源区分布在2个卡林顿经度带,分别为130°~220°的区域和260°~320°的区域.超强太阳质子事件都伴随着强烈的太阳耀斑和快速CME,CME驱动的激波从太阳到地球的平均速度超过1200 km/s.除一个超强太阳质子事件相伴的磁暴略低于强磁暴外,其余8个都伴有Dst≤-100 nT的强烈磁暴.  相似文献   

3.
目前全球激光测距网日臻完善,国内的激光测距网已初具规模,上海、武汉、长春等的SLR站已投入了正常观测。本文利用两批武汉站的1985年激光测LAGEOS卫星的资料,与同期的全球SLR同多的资料一起,主淫地,精密测定了武汉站的地心坐标,在归算中为了减弱地球自转参数的误差和力学模型的不确定性对测定测站坐标的影响,我们设计了多级复弧法,在不同弧段长度内联合解算地球自转参数、卫星轨道和武汉站的坐标,测得的武汉站地心坐标:高度h=38.87m±0.053m;经度λ=114°.3462470±1°.210^-6;纬度φ=30°. 5418007±1°.1×10^ -6。  相似文献   

4.
本文阐述了在二十一太阳周期上升相期间太阳黑子、钙谱斑、2800MHz射电流量和太阳耀斑、质子耀斑、质子事件的活动情况。我们的统计结果表明,在这个时段,太阳活动通过三次脉冲性上升达到极大。 本文确定了上升相的活动经度:L160°~210°和L50°~90°。并对最强的活动区进行了讨论。  相似文献   

5.
日冕物质喷射的观测速度常低于阿尔芬波速的估计值而高于背景日冕声速,这说明日冕物质喷射可能在日冕中形成慢激波。本文取带赤道电流片的冕流结构作为背景,用冕流底部的磁通量喷发作为驱动机制,对日冕物质喷射触发的慢激波进行数值模拟。结果表明,电流片对激波结构有着重要影响。慢激波只出现在电流片的外部,在电流片中逐渐过渡为快激波,慢激波前方的背景磁场在快磁声波的作用下显著偏转,背景密度下降超过10%。慢激波的纬度范围有限,从电流片的外沿大约延伸到±20°,且具有凹向上方的外形。  相似文献   

6.
本文对第22周以来产生M级以上(包括M级)的X射线耀斑的太阳黑子活动区进行了统计分析,得到如下结果:(1)黑子活动区在南北半球上分布是不均匀的。具体表现是:南半球出现的黑子活动区多于北半球出现的。南半球活动较强的黑子群主要集中在80°,160°,200°和340°经度附近;北半球活动较强的黑子群主要集中在240°-280°和340°-360°经度带。(2)黑子群的面积(S_p)越大越易产生X级的X射线耀斑。对黑子群面积S_p在大于1000,500-1000和小于500单位时,它们产生X级的X射线耀斑的比率分别约为41%,33%和9%。  相似文献   

7.
对一个太阳风暴及其行星际和地磁效应的研究   总被引:1,自引:0,他引:1  
邱柏翰  李川 《天文学报》2015,56(1):44-52
对一个爆发于2014年1月7日的太阳风暴进行了研究,通过对太阳活动的多波段遥感观测—来自于太阳动力学天文台(Solar Dynamics Observatory,SDO)以及太阳和日球天文台(Solar and Heliospheric Observatory,SOHO),分析了耀斑和日冕物质抛射(coronal mass ejection,CME)的爆发过程.通过地球同步轨道环境业务卫星(Geostationary Operational Environmental Satellites,GOES)对高能质子以及日地L1点的元素高级成分探测器(Advanced Composition Explorer,ACE)对当地等离子体环境的就位观测,分析了伴随太阳风暴的太阳高能粒子(solar energetic particle,SEP)事件和行星际CME(ICME)及其驱动的激波.通过地面磁场数据分析了该太阳风暴对地磁场的影响.研究结果表明:(1)耀斑脉冲相的开始时刻和CME在日面上的抛射在时序上一致.(2)高能质子主要源于CME驱动的激波加速,并非源于耀斑磁重联过程.质子的释放发生在CME传播到7.7个太阳半径的高度的时刻.(3)穿过近地空间的行星际激波鞘层的厚度和ICME本身的厚度分别为0.22 au和0.26 au.(4)行星际激波和ICME引起了多次地磁亚暴和极光,但没有产生明显的地磁暴.原因在于ICME没有包含一个规则的磁云结构或明显的南向磁场分量.  相似文献   

8.
本文根据太阳字宙线在行星际空间传播方程的量纲分析解,利用太阳质子观测资料求出的等效扩散系数,讨论传播对太阳宇宙线成分中氢氦比的影响,其中包括随太阳风速、空间坐标的变化.从Perron等收集的HEOS和PIONEER卫星观测的资料中消除了随离太阳距离和能量变化后,可以看到太阳宇宙线的氢氦比是随耀斑磁经度而增大的.经过传播改正得到的太阳上发射的氢氦比初始值与太阳风成分比是接近的.  相似文献   

9.
本文对21太阳周(77—80年)较大黑子群(S_p≥250)和较大耀斑(2级以上)在太阳上的位置的分布,活动水平的周期性进行分析,得到如下结论:(1)活动经度在上升年和峰年不一样,峰年活动经度带较宽。(2)活动经度带有向小经度方向漂移的倾向。(3)活动复合体对活动经度带的形成起重要作用。(4)在一个太阳周中较大黑子群的纬度分布有类似“蝶形图”的分布。(5)南北半球分布不均匀,这种不均匀性交替变化有约210天的周期。(6)太阳活动呈周期性,上升年周期约86天,峰年约126天。  相似文献   

10.
瞬时极坐标的确定,六十年来均依靠纬度变化的研究来进行.众所周知,利用纬度变化观测订定 x、y,当任意两台站经度差为90°时,对这一工作最为有利.近十年来天文测时工作有重大的进展,表现在照相天顶筒、超人差棱镜等高仪的出现,它们可以同时而且等精度地测定续度和时刻(经度);原子钟、石英钟以及附属的记录设备已能把任意两地  相似文献   

11.
伴随耀斑和日冕物质抛射共生的日冕和行星际快激波作为一种粒子加速机制一直是理论研究关注的热点课题.在准平行激波传播条件下,首先建立数值求解一维输运方程的方法,然后探讨加速离子分布与激波和背景等离子参数之间的关系.取扩散系数分别为常数和能量的函数、有限自由逃逸边界的计算结果表明:(1)随着加速时间的增大,高能粒子近似呈双幂律分布,低能端(3~10 MeV)谱指数逐渐从10.2减小到2.4,能谱逐渐变硬,粒子被激波加速后能量逐渐增大;(2)随着激波压缩比从2增大到4,相同时间同一能量范围的粒子能谱谱指数逐渐从3.2减小到2.2,能谱逐渐变硬,表明激波强度的增大使得加速效率增大;(3)上下游逃逸边界由5减小到2后,粒子能谱的谱指数由2.4增大到3.3,粒子的加速效率减小;(4)当粒子注入能量增大时,粒子能谱的谱指数由2.4减小到0.9,加速效率增大;(5)当扩散系数与能量成正比时,粒子能谱指数由2.2增大到4.3,能谱变软.  相似文献   

12.
本文首次给出了发生在太阳光球磁重联的一个直接的观测证据。 这一磁重联的观测特征是:(1)重联发生在一新浮现磁通量区的一极与极性相反的老磁通量之间;(2)重联前中性线附近磁剪切明显;(3)被重联两极为一对消磁结构,重联发生在稳定的磁通量损失数小时之后;(4)一个级别为C2.9的亚耀斑发生在重联之前。该耀斑以重联区为中心,双带离重联位置2~3万公里,直到耀斑极大相后14分钟,重联仍未发生;(5)重联后,磁对消速率呈增大趋势。  相似文献   

13.
本文对21周黑子活动区作空间分布的统计分析,得到如下结果:(1)存在三个活动经度带,它们是340°—320°,300°—240°和220°—100°。 (2)黑子活动区在南北半球上分布是不均匀的。(3)用自相关方法作黑子活动区的空间谱分布,结果表明:一个黑子活动区在第一次回转时又产生黑子活动区的可能性是很大的。  相似文献   

14.
基于磁流体力学模拟的太阳高能粒子物理模式研究进展   总被引:1,自引:0,他引:1  
太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,其数值预报研究在空间天气预报研究中占有很重要的地位。SEP事件主要包括3种类型:与太阳耀斑爆发相关联的脉冲型事件,与日冕物质抛射驱动的激波相关联的缓变型事件,以及同时具有缓变型和脉冲型事件特征的混合型事件。其中,缓变型SEP事件持续时间较长并且高能粒子强度较大,对这类事件的模拟是当前研究的难点。目前针对缓变型SEP事件的模拟工作业已发展了多个理论和数值模型。每个模型都对SEP加速和传播的复杂过程作了基本的假设,这些模型的模拟结果能够部分重现观测到的SEP事件特征。而若要提高预报SEP事件的能力,则需要将描述三维日冕物质抛射驱动的激波模型与描述高能粒子在行星际空间中的加速和传输的模型耦合起来,建立基于接近真实的SEP加速和传播的三维太阳风背景模拟及以激波参数为输入的SEP模型。主要回顾了缓变型SEP事件中粒子的加速和传输方面的研究进展,以及可用于获取CME激波传播参数的磁流体力学太阳风模型研究现状;综述了缓变型SEP事件的激波一粒子模型(shock-and-particle model);最后对未来工作进行了讨论和展望。  相似文献   

15.
基于冰期后地壳反弹理论,采用地球上4个最大冰帽的参数,计算了最近21000年以来冰帽的融化对地球惯性张量的影响,得到理论和长期极移方向为西经74°2。现代空间测地技术的观测结果表明,关美板块不存在明显的北向运动,所以国际上9个纬度观测序列的平纬近80年的长期变化存在着随经度的系统性分布尚不能得到很好解释.,变化研究给出3-4mas/a的长期极移结果有等进一步证实。  相似文献   

16.
色球压缩区是耀斑大气动力学过程的一个基本特征,是产生色球谱线红不对称性的基础。本文基于压缩区从大气高层向低层传播的理论公式,在二种不同情况下,计算得到了压缩区内物质运动速度随高度和时间的变化.结果表明,色球蒸发区压力增量Δp为常数时压缩区之寿命比压缩区波阵面后的压力p2为常数时要长得多,这就大大缓解了以往谱线不对称性的延续时间的理论值比观测值小的矛盾。形成高度不同的谱线具有不同程度的不对称性这一观测现象也同色球压缩区的传播特性相一致。  相似文献   

17.
1、太阳活动的节律:太阳活动遵循着一定的节律,表现为一个大周期里包含着间距不等的三个小周期,大周期平均长度为73±2.9(天),小周期的分别为平均为15、22、36、(天),综合指数平均峰(谷)值分别为3.2、(2.2)、2.8、(1.8)、3.1、(1.2)。表现出“强—弱—强—弱—强—弱弱”的节律,调制着耀斑的爆发。 2、大耀斑期的节律:大耀斑(≥X_(0.1)/2F级的耀斑和质子)的时间分布是不均匀的。1988年1月至1989年1月期间的大耀斑分别集中在9个时段,分布也显示出明显的节律周期。即两个相近的耀斑期后有一个较长的间歇期。两个耀斑期和两个间歇期组成一个耀斑节律周期,平均为93±7.8(天)。节律期内的耀斑期和间歇期平均长为:12天(耀斑期)—19天(间歇期)—14天(耀斑期)—48天(间歇期)。显示“强—弱—强—弱弱”的节律。 3、大耀斑的Carrington经度分布:大耀斑节律周期由活动区在日面上分布不均匀引起的。1988年的大耀斑96%分布在90°—160°和250°—10°两个经度带上。它们和上述节律周期共同调制着大耀斑的爆发。 4、对未来一年大耀斑期的预测:(1)1989年3月7日—20日;(2)1989年4月14日—26日;(3)1989年6月9日—23日;(4)1989年9月13日—26日;(5)1989年10月18日—28日;(6)1990年1月15日—26日;(7)1990年3月14日—24日;(  相似文献   

18.
耀斑谱线轮廓的不对称性是耀斑动力学过程的一个重要观测事实。本文在一定的耀斑半经验大气模型基础上,计算了不同速度模式和色球凝聚下的Ha和CaⅡK谱线轮廓,从半经验角度探讨了大气各个层次的速度对Hα和CaⅡK谱线轮廓的影响。结果表明:耀斑早期短时间的Hα蓝不对称性可由位于过渡区的色球凝聚引起;随后的红不对称性是上部色球物质向下运动的结果;而后来出现的CaⅡK不对称性特征则可由色球中、下部具有10—20km/s的向下速度来解释。  相似文献   

19.
利用怀柔太阳磁场望远镜,我们观测到1989年8月17日出现在太阳西边缘的耀斑环,它们产生在AR5629上(S17,L74)。当时,该活动区已转到日背面,约10°左右。17日,从UT0132至UT0911,我们取得了该耀斑环的一系列Hβ单色光资料(图1)和它们的二维实时视向速度场(图2)。从观测中,我们可以看到环的形成演化的全  相似文献   

20.
简要回顾利用"日地关系天文台"(Solar Terrestrial Relations Observatory,STEREO)卫星的立体观测资料在日冕物质抛射(Coronal Mass Ejection,CME)研究方面已取得的一些重要进展,主要包括(1)通过极紫外成像仪观测到的日冕极紫外暗化来更准确地估计CME质量,研究CME演化的结构特征;(2)利用STEREO卫星日冕仪的双角度观测,在CME立体传播特征方面取得的新进展;(3)STEREO卫星日球成像仪具有广阔的视场范围,可以跟踪研究CME从太阳表面爆发到形成行星际日冕物质抛射(Interplanetary CME,ICME),及其在内日球层和近地空间的演化特征以及运动特征等。同时,也介绍了利用三角测量技术测定CME特征物理量的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号