首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   

2.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   

3.
四川石棉-冕宁地区之伸展构造   总被引:1,自引:0,他引:1  
喻安光 《地质通报》2000,19(1):20-25
研究区在中生代造山过程中,以穹隆状变形变质体发育为特征。可分为岩浆核杂岩和变质核杂岩。前者位于地槽区,具前造山期隆—滑构造变形、造山期和后造山期的收缩及伸展变形的演化,与碲矿关系密切后者位于地台区,经历了伸展滑脱、逆冲—推覆和平移剪切变形过程,对区内金矿的形成、分布起重要控制作用。  相似文献   

4.
The Vincent thrust of the San Gabriel Mountains, southern California, separates eugeoclinal Pelona Schist from overlying Precambrian to Mesozoic igneous and metamorphic rocks of North American continental affinity. The thrust is generally considered to be synmetamorphic because of similarity in structural orientations and mineral assemblages between the Pelona Schist and mylonites at the base of the upper plate. In this study, compositions of calcic amphibole and plagioclase in the upper plate and structurally high Pelona Schist were compared to further test this interpretation. Amphibole in the schist is mostly actinolite to actinolitic hornblende with high Na/Al ratio, indicating relatively high-P/low-T metamorphism. Individual grains are zoned, with concentrations of both Na and Al decreasing from cores to rims. Premylonitic amphibole in the upper plate is hornblende, tschermakite and pargasite with compositions indicative of low- or medium-P metamorphism. During mylonitization, this amphibole was replaced by actinolite to actinolitic hornblende with a similar range of Na and Al as amphibole rims in the Pelona Schist, but with slightly lower Na/Al ratio. This is consistent with the decrease of Na/Al up-section previously noted within the Pelona Schist of this area, and is considered to be the result of an inverted thermal gradient during thrusting. Convergence of composition between schist and upper plate also occurs for K and Ti contents of amphibole and An content of plagioclase. These features provide strong evidence that mylonitization of the upper plate is closely related in space and time to metamorphism of the Pelona Schist and therefore that the Vincent thrust is a remnant of the primary fault along which the Pelona Schist and correlative units were subducted beneath North America. Nonetheless, very fine-scale differences in amphibole composition between the schist and upper plate may indicate that metamorphic re-equilibration could not quite keep pace with movement on the fault.  相似文献   

5.
The key to comprehending the tectonic evolution of the Himalaya is to understand the relationships between large-scale faulting, anatexis, and inverted metamorphism. The great number and variety of mechanisms that have been proposed to explain some or all of these features reflects the fact that fundamental constraints on such models have been slow in coming. Recent developments, most notably in geophysical imaging and geochronology, have been key to coalescing the results of varied Himalayan investigations into constraints with which to test proposed evolutionary models. These models fall into four general types: (1) the inverted metamorphic sequences within the footwall of the Himalayan thrust and adjacent hanging wall anatexis are spatially and temporally related by thrusting; (2) thrusting results from anatexis; (3) anatexis results from normal faulting; and (4) apparent inverted metamorphism in the footwall of the Himalayan thrust is produced by underplating of right-way-up metamorphic sequences. We review a number of models and find that many are inconsistent with available constraints, most notably the recognition that the exposed crustal melts and inverted metamorphic sequences not temporally related. The generalization that appears to best explain the observed distribution of crustal melts and inverted metamorphic sequences is that, due to specific petrological and tectonic controls, episodic magmatism and out-of-sequence thrusting developed during continuous convergence juxtaposing allochthonous igneous and metamorphic rocks. This coincidental juxtaposition has proven to be something of a red herring, unduly influencing attention toward finding a causal relationship between anatexis and inverted metamorphism.  相似文献   

6.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

7.
 Situated in the inner zone of the Variscan Iberian Massif, the Tormes Gneissic Dome offers a good opportunity for thermal modelling of orogenic crustal extension, because the P–T–t loops are well constrained by an extensive set of thermobarometric, structural and geochronological data. As an example of feedback between forward and inverse methods, the aim of this study was to establish one- and two-dimensional thermal models that reproduce the contrasting petrological P–T paths of two structural units separated by an extensional tectonic contact in the metamorphic complex, and to explain the spatial and temporary development of the low-pressure metamorphism in the rocks located just above this contact. In one dimension, the syn-extension path of the lower unit resulting from modelling is characterized by an isothermal decompression phase, followed by near isobaric cooling, which is typical of exhumed rocks. The upper unit path records a syn-extension near isobaric heating, more important in rocks just above the tectonic contact. Condensed isograds of low-pressure/high-temperature metamorphism in the basal upper unit are thus interpreted as a consequence of advective crustal extension and conductive upward heat transfer. In two dimensions, the delaminated simple shear geometric model of crustal extension explains the observed temperature rise in excess of 500  °C in the basal upper unit and is consistent with the spatial distribution of M2 low-pressure/high-temperature isograds. This demonstrates the important role of extensional structures produced during the collapse of the thickened crust in the thermal evolution. The heating phase, well explained with intermediate dip angle for extensional fault in the upper crust (45°) and finite extension of 75 km, is followed by cooling, thus reflecting normal erosional process. Received: 1 September 1998 / Accepted: 29 June 1999  相似文献   

8.
兴蒙陆内造山带   总被引:21,自引:9,他引:12  
徐备  王志伟  张立杨  王智慧  杨振宁  贺跃 《岩石学报》2018,34(10):2819-2844
本文提出了"兴蒙陆内造山带"的新概念(Xing-Meng Intracontinent Orogenic Belt,XMIOB),从大地构造、沉积建造、岩浆作用和变质作用等方面论述了XMIOB从晚古生代到中生代初的陆内伸展及陆内造山过程,为探讨晚古生代构造演化提供了新模式。根据对内蒙古中西部晚古生代构造格局的总体认识,可将XMIOB划分为五个构造单元即:早石炭世二连-贺根山裂谷带、晚石炭世陆表海盆地、早二叠世艾力格庙-二连伸展构造带、早-中二叠世盆岭构造带和晚二叠世索伦山-乌兰沟伸展构造带。晚石炭世末-二叠纪在兴蒙造山带基底上发育三期伸展构造:第一期见于内蒙古北部二连-艾力格庙地区,形成陆内裂谷盆地及其盆缘三角洲沉积,发育时代为302~298Ma;第二期在内蒙古中西部广泛分布,以隆起与凹陷相间分布的盆岭构造为特征,发育时代为290~260Ma;第三期见于内蒙古南部索伦山到温都尔庙乌兰沟一带,形成主动裂谷背景下的红海型小洋盆,发育时代为260~250Ma。晚古生代与伸展过程有关的岩浆活动可分四期:1)早石炭世贺根山期:以蛇绿岩为主,发育于具有前寒武纪古老基底和早古生代造山带年轻基底的陆壳伸展区; 2)晚石炭世达青牧场期:主要沿北造山带分布,以基性和酸性岩浆构成的双峰式侵火成岩为特征; 3)早二叠世大石寨期:形成的岩石种类多样,分布广泛,包括双峰式火山岩、双峰式侵入岩和碱性岩; 4)二叠纪末-三叠纪初索伦山期:形成陆缘型蛇绿岩或基性岩-超基性岩组合,产生于软流圈上涌造成的主动裂谷背景。兴蒙陆内造山带的构造变形可分为两期,第一期为晚古生代地层大范围褶皱变形,造成盆-岭构造带的缩短;第二期为沿盆-岭构造的边界强烈剪切变形,产生向东逃逸的挤出构造,其构造背景是北部蒙古-鄂霍茨克造山带和南部大别-秦岭中央造山带的远距离效应引起的被动闭合作用。兴蒙陆内造山带的变质作用分为两个阶段,早期变质作用主要表现为石炭纪期间与陆内伸展有关的低压高温变质,晚期为二叠纪末到三叠纪初区域大面积的低压绿片岩相变质以及沿构造边界的局部中-低压型低温变质。  相似文献   

9.
This paper analyses a major shear zone from the Iberian Hercynian belt which forms the basal thrust of the Mondoñedo Nappe. The shear zone developed by ductile deformation under amphibolite facies metamorphic conditions and later by brittle-ductile deformation in greenschists facies. Folds in the shear zone are asymmetric, very tight, 1C or similar class and frequently developing sheath geometries. The sheath folds originated by non-coaxial flow superimposed on earlier irregularities. The fabric of quartzitic rocks in the shear zone changes from bottom to top from ultramylonites through blastomylonitic rocks to non-mylonitic tectonites. c-axis fabrics vary across the shear zone, but show a dominant monoclinic symmetry. The blastomylonitic rocks include the fabrics representing the highest temperatures. The main foliation of the schists results from flattening of an earlier foliation, recording occasional microfolds. The use of different kinematic criteria has allowed an analysis of their validity as well as an assessment of movement direction towards the foreland of the orogen.  相似文献   

10.
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The post-nappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent pre-collisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.  相似文献   

11.
This study examines the fluid-rock interaction and thermal evolution along a thrust that juxtaposes calcite-rich marbles of high P-T metamorphic unit of the Attic-Cycladic Massif (Greece) on top of a lower-grade dolomite marble unit. The Tertiary thrust represents a major phase of tectonic movement related to the decompression of the Alpine orogen in the Hellenides. The stable isotope signatures of the thrust plane and adjacent sections of the footwall and hanging wall rocks are characterized by significant carbon and oxygen isotope depletions. The depletion is most pronounced in calcite, but is almost entirely missing in coexisting dolomite. The isotopic patterns in the thrust zone can be explained by the infiltration of an externally derived water-rich H2O-CO2-CH4 fluid [X C (=X CO 2+X CH 4)<0.05] at water-rock ratios on the order of 0.1 to 0.5 by weight. The fluid-induced calcite recrystallization is viewed as an important rheological control during thrusting. The temperature evolution of the footwall, hanging wall and mylonitic tectonic contact was determined by calcite-dolomite solvus thermometry. Histograms of calcite-dolomite temperatures are interpreted as indicating a heating of the footwall dolomite marble during the thrusting of the hotter upper plate. Conversely, the hanging wall marble unit was cooled during the thrusting. The calcite-dolomite thermometry of the thrust plane gives temperatures intermediate between the initial temperatures of the lower and upper marble units, and this leads to the conclusion that conductive heat transfer rather than fluid infiltration controlled the thermal evolution during thrusting. Received: 14 April 1998 / Accepted: 9 December 1998  相似文献   

12.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

13.
造山后伸展构造研究的最新进展   总被引:21,自引:2,他引:21  
张家声 《地学前缘》1995,2(1):67-84
本文综合介绍和比较分析了全球范围内不同时期造山带中的伸展构造样式;地壳尺度的拆离带或低角度正断层的性质、几何学和运动学;拆离带下盘变质核杂岩的抬升机理及其中各种韧性组构的成因和发展演变;后造山伸展塌陷过程中的岩浆活动和热演化;伸展平行褶皱的成因和构造几何学;后造山伸展盆地的形成过程;造山带地球物理剖面解释和岩石圈动力学;后造山伸展构造的物理和数字模拟等方面,当前开展的主要研究内容、研究方法和趋势。  相似文献   

14.
Contacts between rocks recording large differences in metamorphic grade are indicative of major tectonic displacements. Low-P upon high-P contacts are commonly interpreted as extensional (i.e. material points on either side of the contact moved apart relative to the palaeo-horizontal), but dating of deformation and metamorphism is essential in testing such models. In the Western Alps, the Piemonte Ophiolite consists of eclogites (T ≈550–600 °C and P≈18–20 kbar) structurally beneath greenschist facies rocks (T ≈400 °C and P≈9 kbar). Mapping shows that the latter form a kilometre-wide shear zone (the Gressoney Shear Zone, GSZ) dominated by top-SE movement related to crustal extension. Rb–Sr data from micas within different GSZ fabrics, which dynamically recrystallized below their blocking temperature, are interpreted as deformation ages. Ages from different samples within the same fabric are reproducible and are consistent with the relative chronology derived from mapping. They show that the GSZ had an extensional deformation history over a period of c. 9 Myr between c. 45–36 Ma. This overlaps in time with the eclogite facies metamorphism. The GSZ operated over the entire period during which the footwall evolved from eclogite to greenschist facies and was therefore responsible for eclogite exhumation. The discrete contact zone between eclogite and greenschist facies rocks is the last active part of the GSZ and truncates greenschist facies folds in the footwall. These final movements were therefore not a major component of eclogite exhumation. Pressure estimates associated with old and young fabrics within the GSZ are comparable, indicating that during extensional deformation there was no significant unroofing of the hangingwall. Since there are no known extensional structures younger than 36 Ma at higher levels in this part of the Alps, exhumation since the final juxtaposition of the two units (at 36 Ma) seems to have been dominated by erosion. Key words: deformation age, eclogite, exhumation, Rb–Sr dating, tectonic.  相似文献   

15.
The present constitution and architecture of the Dabieshan orogenic belt is the combined result of Triassic subduction collision, extensional tectonics postdating the HP and UHP metamorphism, and thermo-tectonic evolution in Mesozoic-Cenozoic time. In addition to Yanshanian and post-Yan-shanian magmatic intrusion, volcanic eruption, and basin deposition, lithotectonic constituents of the Dabie orogenic belt consist mainly of a core complex (CC) unit, an UHP unit, an HP unit, an epidote-blueschist (EBS) unit, and a sedimentary cover (SC) unit. Minor mafic-ultramafic plutons were intruded into or preserved within the CC, UHP, HP, or EBS units. Slices of UHP, HP, and EBS units are progressively sandwiched between the underlying core complex and the overlying sedimentary cover. The distribution of lithotectonic units is controlled by an extensional tectonic framework, which postdates the collisional event. The tectonic pattern of the Dabieshan orogenic belt as a whole is characterized by a general doming, with the development of multi-layered detachment zones.

The study of partial melting associated with decompressive retrogression in the UHP unit during exhumation of the eclogites provides us with a better understanding of the relationship between eclogites and the surrounding country rock (socalled UHP gneisses), and the foliated garnet-bearing granites (the non-HP country rocks). It supports the “in situ” interpretation. Anatexis occurred under conditions of amphibolite-facies metamorphism at lower to middle crustal levels. This partial melting associated with decompression is one of the most important physico-chemical processes that postdate the collisional event in the Dabieshan. It signaled the evolution of the deformation regime from compression to extension, and reflected thinning of the continental crust and rapid uplift of UHP metamorphic rocks to middle to lower crustal levels by regional-scale extension.  相似文献   

16.
造山带中残存有许多前寒武纪地质体,其中一些被当作前寒武纪基底用于探讨所在微陆块的大地构造属性。由于微陆块属性对于造山带结构和演化具有重要意义,以及所讨论的前寒武纪地质体蕴含地球早期历史演化信息,对微陆块属性的厘定成为造山带研究的重点和难点问题之一。笔者等以中亚造山带南缘中段的微陆块为例,总结梳理了微陆块厘定的相关依据:岩石组合和变质变形特征,碎屑锆石谱峰显示的源区时代特征,地质事件序列,前寒武纪地壳演化信息,继承锆石、捕获锆石和古生代侵入体同位素显示的深源地壳信息,以及地球物理等方面的特征。由于不同学者采用的厘定依据不同,对微陆块属性认识争论不断,即使相同依据也有一定的差异,从而影响对造山带结构和演化的认识。基于以上原因,笔者等认为前寒武纪基底的亲缘性探讨不仅要注重岩石组合和形成时代,还要在精细野外解剖和高精度年代学工作基础上,注意其变质—变形特征、接触关系、源区时代特征、岩石成因和构造环境、地壳增生信息和深源地壳信息等的综合对比分析,以得到较全面依据,探讨其构造属性。当获得一组前寒武纪地质体信息时,可先进行同构造单元内对比,再与其他构造单元对比。当特征相异时则需进行构造单元拆分或考虑构造就位的可能(包括但不限于推覆体、走滑外来体、俯冲刮削的构造岩片);当特征相似时,可能指示了相同微陆块的裂解或破坏或者不同的微陆块共同经历了相似的前寒武纪演化历程。  相似文献   

17.
Rift‐related regional metamorphism of passive margins is usually difficult to observe on the surface, mainly due to its strong metamorphic overprint during the subsequent orogenic processes that cause its exposure. However, recognition of such a pre‐orogenic evolution is achievable by careful characterization of the polyphase tectono‐metamorphic record of the orogenic upper plate. A multidisciplinary approach, involving metamorphic petrology, P–T modelling, structural geology and in situ U‐Pb monazite geochronology using laser‐ablation split‐stream inductively coupled plasma mass spectrometry, was applied to unravel the polyphase tectono‐metamorphic record of metapelites at the western margin of the Teplá‐Barrandian domain in the Bohemian Massif. The study resulted in discovery of three tectono‐metamorphic events. The oldest event M1 is LP–HT regional metamorphism with a geothermal gradient between 30 and 50 °C km?1, peak temperatures up to 650 °C and of Cambro‐Ordovician age (c. 485 Ma). The M1 event was followed by M2‐D2, which is characterized by a Barrovian sequence of minerals from biotite to kyanite and a geothermal gradient of 20–25 °C km?1. D2‐M2 is associated with a vertical fabric S2 and was dated as Devonian (c. 375 Ma). Finally, the vertical fabric S2 was overprinted by a D3‐M3 event that formed sillimanite to chlorite bearing gently inclined fabric S3 also of Devonian age. The high geothermal gradient of the M1 event can be explained as the result of an extensional, rift‐related tectonic setting. In addition, restoration of the deep architecture and polarity of the extended domain before the Devonian history – together with the supracrustal sedimentary and magmatic record – lead us to propose a model for formation of an Ordovician passive continental margin. The subsequent Devonian evolution is interpreted as horizontal shortening of the passive margin at the beginning of Variscan convergence, followed by detachment‐accommodated exhumation of lower‐crustal rocks. Both Devonian shortening and detachment occurred in the upper plate of a Devonian subduction zone. The tectonic evolution presented in this article modifies previous models of the tectonic history of the western margin of the Teplá‐Barrandian domain, and also put constraints on the evolution of the southern margin of the Rheic ocean from the passive margin formation to the early phases of Variscan orogeny.  相似文献   

18.
Low‐angle detachment faults are common features in areas of large‐scale continental extension and are typically associated with metamorphic core complexes, where they separate upper plate brittle extension from lower plate ductile stretching and metamorphism. In many core complexes, the footwall rocks have been exhumed from middle to lower crustal depths, leading to considerable debate about the relationship between hangingwall and footwall rocks, and the role that detachment faults play in footwall exhumation. Here, garnet–biotite thermometry and garnet–muscovite–biotite–plagioclase barometry results are presented, together with garnet and zircon geochronology data, from seven locations within metapelitic rocks in the footwall of the northern Snake Range décollement (NSRD). These locations lie both parallel and normal to the direction of footwall transport to constrain the pre‐exhumation geometry of the footwall. To determine P–T gradients precisely within the footwall, the ΔPT method of Worley & Powell (2000) has been employed, which minimizes the contribution of systematic uncertainties to thermobarometric calculations. The results show that footwall rocks reached pressures of 6–8 kbar and temperatures of 500–650 °C, equivalent to burial depths of 23–30 km. Burial depth remains constant in the WNW–ESE direction of footwall transport, but increases from south to north. The lack of a burial gradient in the direction of footwall transport implies that the footwall rocks, which today define a sub‐horizontal datum in the direction of fault transport, also defined a sub‐horizontal datum at depth in Late Cretaceous time. This suggests that the footwall was not tilted about the normal to the fault transport direction during exhumation, and hence that the NSRD did not form as a low‐angle normal fault cutting down through the lower crust. Instead, the following evolution for the northern Snake Range footwall is proposed. (i) Mesozoic contraction caused substantial crustal thickening by duplication and folding of the miogeoclinal sequence, accompanied by upper greenschist to amphibolite facies metamorphism. (ii) About half of the total exhumation was accomplished by roughly coaxial stretching and thinning in Late Cretaceous to Early Tertiary time, accompanied by retrogression and mylonitic deformation. (iii) The footwall rocks were then ‘captured’ from the middle crust along a moderately dipping NSRD that soled into the middle crust with a rolling‐hinge geometry at both upper and lower terminations.  相似文献   

19.
The high-temperature–low-pressure Wongwibinda Metamorphic Complex of the southern New England Orogen is bound by S-type granite plutons of the Hillgrove Supersuite to the north, east and south. New U–Pb geochronology of five samples of the Hillgrove Supersuite demonstrates that plutonism in the complex involved two pulses: ca 300 Ma and ca 292 Ma. This indicates that plutonism partially overlaps the age of high-T–low-P metamorphism (296.8 ± 1.5 Ma), but also postdates it. Zircon grains identified as xenocrysts based on age (≥310 Ma) have U–Pb–Hf isotopic character that largely overlaps detrital grains in the host Girrakool Beds, indicating that accretionary complex crust is the likely source of these xenocrysts. The 176Hf/177Hf initial character for zircon for the ca 300 Ma plutons (three samples) is less radiogenic than those in the ca 292 Ma plutons (two samples). The progression in 176Hf/177Hf initial character for zircon infers an increasing mantle component in the Hillgrove Supersuite with time. These data are evidence of a rift tectonic setting, where mantle-derived magmas are predicted to more readily migrate to shallower crustal levels as the crust thins and becomes hotter. Additionally, early episodes of partial melting in the system melt-depleted the metasedimentary sources, thus reducing the S-type component as anatexis progressed. The evolution of the Hillgrove Supersuite coincides with a period of early Permian slab roll back and extension accompanied by crustal rifting and thinning, leading to high-T–low-P metamorphism, anatexis and S-type granite production and the development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

20.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号