首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the general physical nature of tsunami generation, it is established that it is an attribute of seismically hazardous areas and regions adjacent to large water reservoirs and is threatening to the population and infrastructure of the coastal zones. The main preconditions and possibilities for the occurrence of tsunami on Lake Baikal are considered: the information on earthquakes in the Baikal hollow during the instrumental-historical period (1724–2011) is generalized in the map of epicenters of shocks of magnitude M ⩾ 5 and histograms of the distribution of numbers of shocks with respect to magnitude. It is shown that the tsunami waves start forming on Baikal if the earthquake magnitude M is ≈5, but since a system of tsunami monitoring on Baikal is absent, it can be observed only during the strongest earthquakes of M > 7. The catastrophic Tsagan earthquake (1861, M ≈ 7.5) is given as an example. It happened near the eastern coast of Lake Baikal and caused a tsunami with people’s deaths.  相似文献   

2.
In the paper we report the state-of-the-art of seismicity study in the Baikal rift system and the general results obtained. At present, the regional earthquake catalog for fifty years of the permanent instrumental observations consists of over 185,000 events. The spatial distribution of the epicenters, which either gather along well-delineated belts or in discrete swarms is considered in detail for different areas of the rift system. At the same time, the hypocenters are poorly constrained making it difficult to identify the fault geometry. Clustered events like aftershock sequences or earthquake swarms are typical patterns in the region; moreover, aftershocks of M  4.7 earthquakes make up a quarter of the whole catalog. The maximum magnitude of earthquakes recorded instrumentally is MLH7.6 for a strike-slip event in the NE part of the Baikal rift system and MLH6.8 for a normal fault earthquake in the central part of the rift system (Lake Baikal basin). Predominant movement type is normal faulting on NE striking faults with a left lateral strike-slip component on W–E planes. In conclusion, some shortcomings of the seismic network and data processing are pointed out.  相似文献   

3.
Large earthquakes took place in southern Cisbaikalia in the first half of 1912. They might have caused a mass release of gas (methane?) into the water column of Lake Baikal and the atmosphere near Sharyzhalgai station of the Circum-Baikal Railroad. This phenomenon was observed in August 1912 by the residents as rising water columns several meters high and reported in the regional press.To find traces of this event, core was recovered from bottom sediments at a depth of 1300 m in winter 2010. The depth interval 1–8.7 cm is a homogeneous layer, no more than 100 years old (210Pb dating). The sediments here are poor in SiO2biog but richer in Corg than the underlying sediments. Also, they are marked by a considerable content of terrestrial plant remains, a lower content of planktonic diatoms, and higher contents of benthic and ancient diatoms. These data indicate that the layer under study formed as a result of the 1912 earthquake, with a considerable contribution from the littoral and shallow-water zones of Lake Baikal.  相似文献   

4.
The first tectonophysical model of the Baikal seismic zone represents a separate complex region of the lithosphere. It has a pinnate structure with a backbone belt of current deformation, which is a concentrator of largest earthquakes, and branching, repeatedly reactivated large and small faults. In its vertical section, the seismic zone is tree-like, the stem and the branches being faults of different size ranks which can generate earthquakes when reactivated. The real-time short-period fault motions and the respective seismicity occurring at a certain time and in certain places are triggered by strain waves, which disturb the metastable state of the faulted lithosphere subject to regional stress. The modeling work includes developing general requirements for tectonophysical models of continental rifts and special methods for identifying the faults that become active within short historic time spans, as well as techniques for locating potential events in space and time in specific active faults. The methods and model testing for medium-term earthquake prediction are described by the example of the well-documented Baikal seismic zone, which is the most active part of the Baikal rift system. The tectonophysical model for the Baikal zone is statistically supported by field data, and this allows estimating the velocities and periods of strain waves for different zone segments and faults, with implications for nearest-future earthquake prediction.  相似文献   

5.
地震成因综述   总被引:2,自引:0,他引:2  
本文从地质、地球物理、地球化学和能量等方面分析了地震的成因。源于地核地幔的流体携带大量热能,为岩浆起源、地震形成和地热田提供了充足的能量,然而岩石聚集的应变能不足以产生中等以上的地震。大地震(M≥6.0)绝大部分分布在海沟、火山岛弧和大陆裂谷带等拉张性构造带,如环太平洋海沟、东印度洋海沟、大洋中脊、非洲裂谷、地中海-黑海-里海-波斯湾、欧亚大陆中部的伊塞克湖-阿拉湖-乌布苏湖-库苏古尔湖-贝加尔湖裂谷。流体在地球深部物质运动、地壳运动、地震和火山活动中扮演着重要作用。全球到处发育的隐爆角砾岩表明隐爆作用的普遍性。深部流体向上运移、向地表逃逸的过程中发生爆炸,在地球内部产生了不同震级和震源深度的地震。因此,隐爆应该是产生地震的主要机制。地震成因的隐爆模型不仅能够更好地解释不连续、各向异性的非弹性介质中发生的各类地震,譬如中深源震、震群、慢地震和非双力偶性地震等,而且能够更好地诠释全球地震、火山和地热带在空间上的吻合以及隐爆角砾岩型矿藏的形成。  相似文献   

6.
In this paper the features of seismic process in the southern depression of Lake Baikal are considered. By the data on focal mechanisms of the earthquakes of February 25, 1999 (M w = 6.0), and August 27, 2008 (M w = 6.3), as well as based on configuration of their aftershock fields, it is determined that foci of strong seismic events in southern Baikal are controlled by the greatest structural elements of sublatitudinal and submeridional strikes. It has been shown that a substantial role in the formation of focal zones is played by low-scale destruction of the Earth’s crust, revealed by geological-geophysical data and proved by clustering of seismic shocks. New data on the August 27, 2008, earthquake have proved the high level of seismic danger of this part of the Baikal Rift Zone and allowed us to determine generation conditions of strong earthquakes more precisely.  相似文献   

7.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

8.
This paper presents data on the lithological composition of Cenozoic deposits penetrated for the first time by boreholes BDP-96-1, BDP-96-2, and BDP-98 down to a depth of 600 m on the underwater Akademicheskii Ridge in Lake Baikal. The deposits are subdivided into the upper (Angara) and lower (Barguzin) sequences, which span the Middle Miocene-Holocene period. They formed under different climatic conditions and tectonic settings. Sources of the terrigenous material were also different. Outbursts of diatom-and mineral formation in Lake Baikal can be related to not only climatic fluctuations in the Miocene-Holocene, but also the endogenous activity. By the analogy with the World Ocean, underwater gas-hydrothermal fluid discharge detected at the water-bottom interface in this lake may be accompanied by the formation of diatomaceous oozes and ferromanganese nodule fields and the concentration of rare elements.  相似文献   

9.
High-resolution palynological analysis of a 38-cm long core collected from Lake Sapanca, northwest Turkey, reveals large earthquakes that occurred during the second half of the 20th century along the North Anatolian Fault Zone. Four events have disturbed the lacustrine sedimentary sequence. Three of the four events are historical earthquakes in 1999 in Izmit, 1967 in Mudurnu and 1957 in Abant. These events are recorded in the core by turbiditic deposits and reworked sediment and by low overall palynomorph concentrations but high values of thick-exined pollen, fern spores and fungal spores. Palynomorphs in the event beds have been grouped based on their associations in modern moss, river and lake samples. The inferred mechanisms of transport and sources for the palynomorphs are: 1- lake sediment displaced by slump, 2- collapsed shoreline sediment owing to seiche, waves and sudden lake level changes, 3- subsidence of deltas and 4- river-transported soil and sediment from upland areas. The 1999 Izmit earthquake is only weakly recorded by palynomorphs, probably due to recent engineering control on the rivers. The 1967 Mudurnu earthquake had the strongest effect on the lake, introducing successive packages of sediment to the centre of the lake from underwater slopes, the lakeshore and rivers.  相似文献   

10.
受环太平洋地震带影响,华北平原地区地震频发,尤其是处于中国首都经济圈的京津冀地区的地震事件备受关注。通过对历史文献资料及地震台网记录中的地震事件统计、分析,重建该地区地震事件历史并获取其潜在的空间分布特征及时间规律,对未来地震事件的早期预警具有重要参考意义。分析结果表明,公元前231年至公元2018年期间京津冀地区发生的1044起地震事件中,以有感地震和中强地震为主,小地震、强烈地震以及大地震发生频次较低。地震记录完整性分析结果表明,除小地震外,其他等级地震记录自公元1400年以来基本完整。在空间分布上,京津冀地区历史地震呈“T”字形分布,沿1条北西—南东走向地震带和1条北东—南西走向地震带分布。在时间上,京津冀地区地震事件呈现出阶段性的变化,在公元1480—1680年间以及1950年以来2个时间段内较为活跃,发生频率较高,频谱分析结果进一步表明地震记录存在45年的复发周期。在月际尺度上,地震事件同样存在季节性差异且多发于夏秋季节,同时地震密集区域在年内呈现出自西向东迁移的现象。最后,根据历史地震事件发生的时间规律,在未来一段时间内京津冀地区仍将处于地震活跃期,存在发生强震的风险。  相似文献   

11.
New factual materials on methane eruptions into the water of Lake Baikal in August 1912 are considered. The regional press is used as the information source. The spatio-temporal relationship between the gas eruptions and earthquakes, observed in South Baikal in 1912, is revealed, which permits us to consider this effect as a consequence of seismic activity intensification. Intensive methane discharge into water is a potential danger for the lake’s ecosystem as was proved by massive death of water organisms in South Baikal in 1912 during the described phenomena.  相似文献   

12.
Scenarios for developing focal zones of strong (M w = 5.3) earthquakes that occurred in the Middle Baikal region in 2008 and 2011 are considered. The new (submeridional and sublatitudinal) lines of destruction of the Earth’s crust in the water area of the lake are recorded. The facts of seismoactive structures forming in the surrounding mountains (to the southeast) under typical rift conditions of movements are established, which indicates that the basin of Lake Baikal is expanding and growing due to active capturing and processing of its mountain surroundings.  相似文献   

13.
China Metropolitan area around Beijing is one of the earthquake test sites in Continental China. Through more than 20 years of hard work, abundant seismic, geological, geophysical and geochemical data have been obtained, and the variation of seismic, geophysical and geochemical parameters was recorded before several strong earthquakes and some moderate earthquakes in this area. In this paper, we chose 19 high qualified observatory parameters in this area to establish a multidisciplinary system for earthquake forecast, including apparent resistivity, ground water level, ground-level, tilt, radon content in groundwater, volumetric strain, Hg content in groundwater, low frequency electric signal. We calculate the synthetic information by a simple algorithm. The procedure is: firstly, we detect the abnormal intervals of the observatory data by some data analysis methods such as filtering, differencing, etc.; secondly, we endow the value of 1 to the abnormal intervals and 0 to other intervals and produce a new time series of data set of the ith parameter; thirdly, we compose the value of the new time series of 19 observatory parameters and obtain the normalized value as called synthetic information. The result shows that there are high correlations between the high synthetic information and the earthquakes with M ≥ 5.0 in this area. The earthquakes almost occurred several days to several months after the peak value of the synthetic information. This synthetic method might be taken for a short-term prediction method for M ≥ 5.0 earthquakes in this area.  相似文献   

14.
印度板块与欧亚板块在新生代期间的持续碰撞和挤压过程导致亚洲大陆发生了强烈的弥散式板内变形,并形成了一个以贝加尔湖为顶点,以喜马拉雅带为底边的近似三角形的变形区与强震活动区,即新-藏三角区。基于固体刚塑性变形平面结构,结合滑移线场网络模型,对该区历史强震活动的大范围离散式空间分布特点进行了分析解释。结合1505-1976年以来历史强震空间迁移的实例,归纳了该区历史强震活动与地震应变释放从印度板块边界→新-藏地块→两侧大陆的顺序性及定向性迁移特征,并根据对地震空间迁移规律的认识,进一步探讨了区域未来强震危险性问题。结果显示,从2000-2018年间,印度板块边界和新-藏三角区已多次发生M7.9~9.1大地震,但其东、西两侧的区域大陆地区却异常平静,没发生过7级以上大地震。依照区域强震活动的顺序性迁移特点,推测在未来几到几十年,亚洲大陆东部与中部以及喜马拉雅带东段等区域的大地震危险性较大。   相似文献   

15.
The patterns of renewal of bottom waters in Lake Baikal under the influence of deep convection and intrusion of cold waters have been considered based on the data of temperature surveys of Lake Baikal conducted in 1993–2009. The volumes of the cold bottom layer with the maximums of 200–470 km3 in individual years and the values of its total cooling (−20–60 × 109 MJ) have been determined for South, Middle, and North Baikal. The renewal process is asynchronous and proceeds with different activity in these parts of the lake, which indicates that the mechanisms that cause deep convection in the context of the great latitudinal length and differences in the climate and hydrological processes manifest themselves regionally. The volume of intrusions has been determined. Its average value for the period was higher in South Baikal (20 km3) than in Middle Baikal (9.8 km3) and North Baikal (8.6 km3). The volume of the intrusions in these parts of the lake was 30–70 km3 in some years.  相似文献   

16.
Eutrophication processes have been recorded in many world’s freshwater reservoirs, which are sources of drinking water. More and more investigations show that global warming is the main natural factor that causes eutrophication. In recent years, signs of eutrophication have also been recorded in Lake Baikal containing 20% of the world’s freshwater reserves. Therefore, we performed the first comprehensive analysis of long-term changes in climatic parameters capable to provoke negative changes in the shallow zone. The largest number of anomalies of climatic indices has been recorded in the 21st century. Moreover, the current decade has been the most favorable for the emergence of negative processes in the lake (outbreak of the mass growth of algae and aquatic vegetation, rotting of their remains at the bottom and on the shores of the lake, changes in the structure and zoning of biocoenoses, etc.). The main natural conditions favoring the emergence of negative signs are elevated temperatures of the air and lake shore water, reduced amount of precipitation, reduced inflow of river waters into Baikal and lowering of its water level, low-water season, and weakening of wind currents, water exchange processes, and, as a result, water self-purification. In the period of continuing global warming, it is necessary to study the climate effect on the processes in the shallow zone and to carry out long-term monitoring for elucidation of recent and expected changes in the ecological state of Lake Baikal and for their valid interpretation.  相似文献   

17.
Correlation analysis of annual numbers of earthquakes for Baikal Region and Mongolia allowed us to discover episodes of synchronized change in velocity of the seismic current in the territory of seven territories and twelve sections of the Mongolian-Baikal Region (MBR), substantially distant from each other. The three episodes of short-term synchronization in seismic process in the MBR were detected, namely, in the late 1960s, in the early 1980s, and in the mid 1990s. The episode of the early 1980s was observed in all the territories, while the episode of the late 1960s was expressed more weakly in Mongolia and distinguished mostly with an implementation length of three years. The episode of the mid 1990s requires further study with the use of parameters for seismic sources. The observed synchronization for annual numbers of earthquakes is evidence for the fact that activation of seismic process takes place almost simultaneously throughout the huge territory of the MBR during stress reconstruction in the lithosphere of the Baikal Rift Zone (BRZ); this activation forms a short-term coherent change in the velocity of quakes current for the spatial-temporal distribution of seismicity, which shows the seismogenic relation between Baikal Region and Mongolia.  相似文献   

18.
19.
The fractal dimension of the epicentral field of earthquakes (D = 1.6) is determined for the Sikote Alin orogen and adjacent areas. According to this parameter, the region occupies the position between the Kamchatka Peninsula, Kuril Islands (1.61 and 1.69), the East China area, and the Lake Baikal region (1.55 and 1.40). Differentiation of the studied area based on the fractal dimension of the number of earthquakes and on the released energy calculated per unit square shows that the most active crustal areas are associated with the Kharpi–Kur–Priamur’e zone of the northeastern orientation, which is the northern segment of the Tan-Lu transregional fault system. Analysis of the time series of seismic events (MLH ≥ 2.4) in the Sikhote Alin and adjacent areas in the period from 1960 to 2013 shows that the “harmonic” with a 10.5-year period is most clearly displayed. This period (11–13 years) was previously distinguished by B.V. Levin and coauthors from the study of the largest number of earthquakes with M ≥ 4.4 for the period of 1971–2003.  相似文献   

20.
杜秋姣  李阶法  李献瑞  曾佐勋 《地球科学》2014,39(12):1851-1856
通过分析中国航空工业总公司625研究所地电场监测站30多年监测的原始资料, 提取了其中8组数据, 包括4组地电场中的长期异常信号和4组对应震级Ms6.0以上的地震震前短临异常信号.发现这些异常信号有以下特征: 地电场中的长期监测图中包括了许多不同大小、距离远近地震的孕震信息, 其中近区大震会主控一条或多条曲线的走势, 远大、近小的地震会造成曲线时上时下的振荡; 从4组地电场短临信号监测图中发现震前地电场异常总体表现为下降(上升)—折返—回跳—发震的模式, 说明地电场异常变化形态具有相似性和重复性, 证明地电场观测确实能监测到震前异常.发现适合该监测站预测发震时间的新方法: 根据折返天数与回跳天数大致相等, 即回跳日期加上折返天数为发震日期, 证明地电场短临预测方法具有一定的实用性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号