共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
J. P. Cogné 《Geophysical Journal International》1987,91(3):1013-1023
Anisotropic assemblages of multidomain magnetite particles develop an anisotropy of magnetic susceptibility (AMS), which in turn induces deviations of thermo-remanent magnetization (TRM) from the field direction. From the theories of multidomain TRM acquisition, it is shown that the TRM anisotropy tensor has its eigenvalue ratios ( T i ) related to the principal weak-field susceptibility ratios ( P i ) by the order of magnitude T i ≃ P 2 i . This relation has been experimentally verified on two sets of highly anisotropic rock samples. The exponent has been determined to be 1.94 in the samples from a Peruvian gabbro, and 1.81 in those from the granite of Flamanville (NW France). Accounting for experimental difficulties in determining the TRM anisotropy tensors, these exponents are judged to agree well with the expected one. It is therefore stressed that AMS measurements provide a good means of evaluating the magnetic field direction from deviated TRM directions, providing magnetic carriers are mainly multidomain magnetites. 相似文献
8.
Multimodal investigation of thermally induced changes in magnetic fabric and magnetic mineralogy 总被引:1,自引:0,他引:1
Z. X. Li J. Dobson Z. Chen W. J. Chang & T. G. St. Pierre 《Geophysical Journal International》1998,135(3):988-998
Low-field magnetic susceptibility and its anisotropy (AMS) were measured for a suite of sandstone and siltstone samples. AMS orientations measured on two systems (Bartington and Digico) differed before thermal treatment of the samples but became the same after thermal demagnetization in air to 600 °C. Six position measurement schemes for the Bartington system do not eliminate the effects of specimen inhomogeneity and other errors, whereas 12- and 24-position measurements give good agreement with the Digico anisotropy meter and with the observed petrofabric. Thermal demagnetization from temperatures between 400 and 650 °C had the effect of enhancing both the magnetic susceptibility and AMS. Although the most profound mineralogical change due to heating was the conversion of kaolinite into metakaolin, IRM, XRD, DTA and Mössbauer spectroscopic analysis demonstrate that the changes in magnetic properties were due to the transformation upon heating of trace amounts of sulphides into magnetite and/or maghemite and haematite. Both magnetic susceptibility and the degree of anisotropy decrease with higher-temperature thermal demagnetization due to the oxidation of the newly formed magnetite and/or maghemite into haematite. The magnetic foliation of the newly formed magnetite/maghemite and haematite is parallel to the bedding, possibly following the orientation of the original sulphides. 相似文献
9.
10.
11.
12.
13.
J.-P. Callot E. Gurevitch M. Westphal J.-P. Pozzi 《Geophysical Journal International》2004,156(3):426-430
14.
Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica) 总被引:3,自引:0,他引:3
Volcanic rocks forming sills, dykes or lava flows may display a magnetic anisotropy derived from the viscous flow during their emplacement. We model a sill as a steady-state flow of a Bingham fluid, driven by a pressure gradient in a horizontal conduit. The magma velocity as a function of depth is calculated from the motion and constitutive equations. Vorticity and strain rate are determined for a reference system moving with the fluid. The angular velocity and the orientation of an ellipsoidal magnetic grain immersed in the fluid are calculated as functions of time or strain. Magnetic susceptibility is then calculated for a large number of grains with a uniform distribution of initial orientations. It is shown that the magnetic lineation oscillates in the vertical plane through the magma flow direction, and that the magnetic foliation plane changes periodically from horizontal to vertical. The results are compared with the magnetic fabric of Ferrar dolerite sills (Victoria Land, East Antarctica) derived from low-field susceptibility measurements. 相似文献
15.
16.
黄土磁化率各向异性(AMS)被认为是重建古风向变化重要的指标之一,在黄土高原地区得到广泛的应用。然而新疆地区的黄土磁化率各向异性研究相对薄弱。通过对新疆塔城盆地库尔托别剖面磁化率各向异性参数和磁化率分析古风向和风力强度的变化,结果表明:塔城地区末次冰期以来以东南风为主,剖面从下至上,可分为5个阶段:第1阶段(12~14 m):对应MIS3c时期,磁组构特征受水流作用的影响明显,表现为东南风。第2阶段(6~12 m):对应MIS3b时期,出现西南风,但主要还是以东南风为主。第3阶段(4~6 m):对应MIS3a早中期,以东南风为主,西南风逐渐消失,并且风力强度逐渐减弱。第4阶段(0.5~4 m):对应MIS3a晚期和MIS2早期,表现为东南风,风力强度波动较大。第5阶段(0~0.5 m):磁组构特征受成壤作用影响强烈。 相似文献
17.
18.
19.