首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent results of the gamma-ray Cherenkov astronomy definitely prove the existence of fast variability in the very high energy (V.H.E.) gamma-ray flux of some active galactic nuclei. The BL Lac PKS 2155-304 for instance showed variations down to a few minutes time scale. From standard light travel time argument, these variations put extremely strong constraints on the size of the TeV emitting zone, which has to be of the order of a few Schwarzschild radius, even for high values of the relativistic Doppler factor of the emitting jets. Such discovery is a challenge for particle acceleration scenarios, which have to imagine efficient acceleration processes at work in a very compact zone. Eventually, the immediate vicinity of the central black hole appears as the most conservative choice for the location of the TeV emission region of active galactic nuclei. In this paper, we propose a two-step mechanism for charged particle acceleration in the magnetosphere of a massive black hole surrounded by an accretion disk. Particles first gain energy by a stochastic process during the accretion phase. It is shown that effective proton acceleration up to energies 1017–1019 eV is possible in a low-luminosity magnetized accretion disk with 2D turbulent motion. The distribution function of energetic protons over energies is a power law function with typical index ≃−1. Here electrons are not very efficiently accelerated because of their drastic losses by synchrotron radiation. In a second time, part of the fast particles escape from the disk and are then entrained by the magnetic structure above the disk, in the rotating black hole magnetosphere. They thus gain additional energy by direct centrifugal mechanism, up to about 1020 eV for the protons and to 10–100 TeV for the electrons when they cross the light cylinder surface. Such energetic particles can further radiate in the TeV spectral range observed by Cherenkov experiments as HESS, MAGIC and VERITAS. Energetic protons can produce γ-radiation in the energy band 1 GeV–100 TeV and above mainly by nuclei collisions with the disk matter, clouds, or ambient low energy photons. Energetic electrons can also reach the required spectral range by inverse Compton emission. However their acceleration is less efficient due to heavy radiation losses, and only gained by centrifugal process during the second phase of the whole mechanism we describe. Our present analysis would therefore favor hadronic scenarios for TeV emission of active galactic nuclei. It is tempting to relate long term variability over years of TeV active galactic nuclei to the first stochastic acceleration phase, which also provides the needed power law particle distributions, while short term variability over minutes is more likely due to perturbations of the second fast direct acceleration phase.  相似文献   

2.
We propose a decay signature for non-thermal small black holes with masses in the TeV range which can be discovered by neutrino observatories. The black holes would result due to the impact between ultra high energy neutrinos with nuclei in water or ice and decay instantaneously. They could be produced if the Planck scale is in the few TeV region and the highly energetic fluxes are large enough. Having masses close to the Planck scale, the typical decay mode for these black holes is into two particles emitted back-to-back. For a certain range of angles between the emitted particles and the center of mass direction of motion, it is possible for the detectors to measure separate muons having specific energies and their trajectories oriented at a large enough angle to prove that they are the result of a back-to-back decay event.  相似文献   

3.
We discuss the implications of the recent X-ray and TeV γ-ray observations of the PSR B1259–63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models have problems to account for the observed behaviour of the system. We develop a model in which the broad band emission from the binary system is produced in result of collisions of GeV–TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy γ-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (≤100 MeV) electrons from the decays of secondary charged π ± mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.   相似文献   

4.
The recent detection of very-high-energy (GeV – TeV) γ-ray emission from the Galactic black-hole candidate and microquasar LS 5039 has sparked renewed interest in jet models for the high-energy emission in those objects. In this work, we have focused on models in which the high-energy emission results from synchrotron and Compton emission by relativistic electrons in the jet (leptonic jet models). Particular attention has been paid to a possible orbital modulation of the high-energy emission due to azimuthal asymmetries caused by the presence of the companion star. Both orbital-phase dependentγγ absorption and Compton scattering of optical/UV photons from the companion star may lead to an orbital modulation of the gamma-ray emission. We make specific predictions which should be testable with refined data from HESS and the upcoming GLAST mission.  相似文献   

5.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.  相似文献   

6.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

7.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

8.
Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ∼ 0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, either as an alternative to intensive atmospheric monitoring and modelling efforts, or for independent verification of such procedures.  相似文献   

9.
We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10–1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world. The Tibet ASγ Collaboration.  相似文献   

10.
The degree of linear polarization in solar flares has not yet been precisely determined despite multiple attempts to measure it with different missions. The high energy range, in particular, has very rarely been explored, due to its greater instrumental difficulties. We approached the subject using the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) satellite to study six X-class and 1 M-class flares in the energy range between 100 and 350 keV. Using RHESSI as a polarimeter requires the application of strict cuts to the event list in order to extract those photons that are Compton scattered between two detectors. Our measurements show polarization values between 2 and 54%, with errors ranging from 10 to 26% in 1σ level. In view of the large uncertainties in both the magnitude and direction of the polarization vector, the results can only reject source models with extreme properties.  相似文献   

11.
It is generally expected that quantum gravity theory should yield the model of a space–time foam at short distances leading to Lorentz-invariance violation (LIV) manifested e.g. by energy-dependent modification of the standard relativistic dispersion relation. One direction of research, pursued intensively, is to measure the energy-dependent time-of-arrival delays in photons emitted by astrophysical sources located at cosmological distances. This is tempered, however, by our ignorance of intrinsic emission delays in different energy channels.
In this paper we discuss a test based on gravitational lensing. Monitoring time delays between images obtained in different energy channels, for example optical (low-energy) and TeV photons, may reveal extra delays due to the distorted dispersion relation typical in LIV theories, a test that is free from the systematics inherent in other settings.  相似文献   

12.
McConnell  Mark L.  Ryan  James M.  Smith  David M.  Lin  Robert P.  Emslie  A. Gordon 《Solar physics》2002,210(1-2):125-142
Although designed primarily as a hard X-ray imager and spectrometer, the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) is also capable of measuring the polarization of hard X-rays (20–100 keV) from solar flares. This capability arises from the inclusion of a small unobstructed Be scattering element that is strategically located within the cryostat that houses the array of nine germanium detectors. The Ge detectors are segmented, with both a front and rear active volume. Low-energy photons (below about 100 keV) can reach a rear segment of a Ge detector only indirectly, by scattering. Low-energy photons from the Sun have a direct path to the Be and have a high probability of Compton scattering into a rear segment of a Ge detector. The azimuthal distribution of these scattered photons carries with it a signature of the linear polarization of the incident flux. Sensitivity estimates, based on Monte Carlo simulations and in-flight background measurements, indicate that a 20–100 keV polarization sensitivity of less than a few percent can be achieved for X-class flares.  相似文献   

13.
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma-rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of ∼GeV–TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high-energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically     . Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favourable targets to detect pair echoes may be the 'naked' GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30–300 s.  相似文献   

14.
A detailed simulation of vertical showers in atmosphere produced by primary gammas and protons, in the energy range 1–100 TeV, has been performed by means of the FLUKA Monte Carlo code, with the aim of studying the time structure of the shower front at different detector heights. It turns out that the time delay distribution can be fitted using few parameters coincident with the distribution central moments. Such parameters exhibit a smooth behaviour as a function of energy. These results can be used both for detector design and for the interpretation of the existing measurements. Differences in the time structure between gamma and proton induced showers are found and explained in terms of the nonrelativistic comonent of extensive air showers.  相似文献   

15.
The energy spectra of TeV gamma-rays from blazars, after being corrected for intergalatic absorption in the extragalactic background light (EBL), appear unusually hard, a fact that poses challenges to the conventional models of particle acceleration in TeV blazars and/or to the EBL models. In this paper, we show that the internal absorption of gamma-rays caused by interactions with dense narrow-band radiation fields in the vicinity of compact gamma-ray production regions can lead to the formation of gamma-ray spectra of an almost arbitrary hardness. This allows significant relaxation of the current tight constraints on particle acceleration and radiation models, although at the expense of enhanced requirements to the available non-thermal energy budget. The latter, however, is not a critical issue, as long as it can be largely compensated by the Doppler boosting, assuming large (>10) Doppler factors of the relativistically moving gamma-ray production regions. The suggested scenario of formation of hard gamma-ray spectra predicts detectable synchrotron radiation of secondary electron–positron pairs which might require a revision of the current 'standard paradigm' of spectral energy distributions of gamma-ray blazars. If the primary gamma-rays are of hadronic origin related to pp or   p γ  interactions, the 'internal gamma-ray absorption' model predicts neutrino fluxes close to the detection threshold of the next generation high-energy neutrino detectors.  相似文献   

16.
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV–TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2–3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10°. In the following study, we investigate the prospects for CTA to study several science questions that can profoundly influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations currently under discussion, we employ a Monte Carlo based approach to evaluate the prospects for detection and characterisation of new physics with the array.First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, which are virtually void of astrophysical background and have a relatively well known dark matter density; in the region close to the Galactic Centre, where the dark matter density is expected to be large while the astrophysical background due to the Galactic Centre can be excluded; and in clusters of galaxies, where the intrinsic flux may be boosted significantly by the large number of halo substructures. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma-rays from very distant blazars. We establish the axion mass range CTA could probe through observation of long-lasting flares in distant sources. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.  相似文献   

17.
王洪涛  潘艳平 《天文学报》2012,53(4):265-273
OJ 287是存在着剧烈活动的低峰频BL Lac天体,其低频段的能谱与另两个TeV BL Lac天体(0716+714和BL Lacertae)在低频段的能谱很相似,但是切仑科夫望远镜却没能探测到它的TeV射线.利用这3个天体的观测数据,比较它们在22 GHz、37 GHz和B波段的最小光变周期及延迟的异同,进一步寻找没有观测到OJ 287的TeV伽马射线的可能原因.分析结果显示:(1)最小光变周期方面,OJ 287在37 GHz和B波段的周期偏小,在22 GHz,OJ 287与0716+714的结果相当,但与BL Lacertae相比要小很多,OJ 287的周期更短表明其活动性更强,却没有探测到来自OJ 287的TeV伽马射线,这表明OJ 287在TeV波段的辐射与这3个低能波段最小光变周期之间可能没有联系;(2)延迟方面,OJ 287在B波段相对于37 GHz的延迟要长于0716+714,短于BL Lacertae;在37 GHz相对于22 GHz的延迟要短于0716+714,而BL Lacertae在37 GHz相对于22 GHz的时延为负值,表明22 GHz要超前于37 GHz.通过对延迟的比较分析,并没有发现OJ 287与0716+714和BL Lacertae之间存在明显的差异;从能谱来看,很可能是由于OJ 287在TeV波段的能谱较陡造成切仑科夫望远镜没有探测到来自OJ 287的伽马辐射,但TeV能段较陡的能谱对低能段光变的影响目前还不是很清楚.  相似文献   

18.
19.
We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.  相似文献   

20.
Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (“TeV plerions”). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN “Rabbit” G313.3+0.1 which is possibly powered by a young pulsar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号