首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
利用大型水槽设计了在由深水到近岸不同坡度处海浪在变浅作用下诱导产生的长周期重力波的实验。正态随机海浪在深水生成并沿斜坡向浅水传播,记录了不同水深处波面高度随时间的变化过程并进行统计分析和谱分析。实验数据分析结果表明,长周期重力波的能量随着水深的变浅而增高,其谱锋频率位于0.2~0.3fp附近,这里fp是深水正态海浪过程的谱峰频率。长周期重力波的能量与入射波的能量比与波面高度分布的偏度密切相关。进一步分析了两种波动的能量谱峰值比和波面高度分布偏度的相关关系,获得了经验关系,为预测近岸浅水长周期重力波提供了科学依据。  相似文献   

2.
用波面高度分布的非正态特征反演非线性随机海浪   总被引:1,自引:0,他引:1  
本文不依据波动的非线性方程,而是利用波面高度分布的非正态特征反演非线性随机海浪.在窄谱条件下,论述了反演的非线性波面、谱及波面极大(小)值分布同现有某些非线性理论结果的一致性,以深水正态海浪过程用浅水非正态特征反演浅水非线性海浪过程及其谱作为算例,并用实测资料检验,结果表明,其同实测值符合较好,从而说明本文方法是可行的.  相似文献   

3.
利用实测和实验室数据分析了未破碎变浅海浪波面高度分布三阶矩(或波面偏度)相对于Hs/d的空间演化,利用本文的经验关系,在二阶近似下,给出了以Hs/d为参量的非线性波面表示模式,并推导了功率谱、二阶谱以及波面高度分布函数等特征量.文中还讨论了波面偏度和峰度的相关关系.  相似文献   

4.
未破碎变浅随机海浪的波面高度概率分布   总被引:1,自引:0,他引:1  
利用青岛海洋大学物理海洋实验室现代化的大型水槽,设计进行了多种海浪强度下,由深水传入近岸不同坡度水底上的变浅随机海浪的实验.依据实验资料分析结果表明,对变浅非正态海浪过程而言,其波面高度分布取Gram-Charlier级数前3项,所得结果与实验分布符合良好.该分布中σ、λ3、λ43个参量是测点水深和波浪强度的函数,并获得了与无因次参量Hs/d之间的经验关系,为预测变浅随机海浪的波面高度分布提供了可能.  相似文献   

5.
时莹  梁书秀  孙昭晨 《海洋工程》2018,36(6):116-123
基于浅水斜坡地形的物理模型试验数据,考察SWAN模型对实验室小尺度浅水波浪的模拟效果,进而检验其浅水项的模拟精度。模拟中采用直接输入初始测点的实测海浪谱进行造波,重点考察浅水中三波相互作用和变浅破碎两个源项,对不同工况下,SWAN模式在水深条件变化下的有效波高、谱平均周期、海浪谱演化的模拟能力进行研究。研究表明:模拟的有效波高较符合实测波浪的增长和衰减,但谱平均周期计算值明显偏小;海浪谱的能量转移机制同实测有较大区别,频谱模拟结果出现高频高估、低频低估现象。对两个源项进行对比分析得出三波相互作用对海浪谱的能量转换影响远大于变浅破碎耗散。想要提高近岸区谱平均周期和海浪谱的模拟精度则SWAN模型中三波非线性项的计算精确度仍需更多研究和改进。  相似文献   

6.
管长龙 《海洋与湖沼》1997,28(5):503-508
基于Longuet-Higgins提出的非线性随机海浪模型,在二阶近似下通过直接计算联合分布的各阶矩,导出了非线性海浪波面高度和波面垂直速度的联合分布,该分布为非正态,其形式为截断的级数,而非由累积矩母函数方法可能得到的渐近无穷级数。由于非线性的影响,波面高度与波面垂直速度不再相互独立。  相似文献   

7.
管长龙 《海洋与湖沼》1997,28(5):503-508
基于Longuet-Higgins提出的非线性随机海浪模型,在二阶近似下通过直接计算联合分布的各阶矩,导出了非线性海浪波面高度和波面垂直速度的联合分布。该分布为非正态,其形式为截断的级数,而非由累积矩母函数方法可能得到的渐近无穷级数。由于非线性的影响,波面高度与波面垂直速度不再相互独立。  相似文献   

8.
偏态海浪过程的数值模拟   总被引:2,自引:0,他引:2  
刘新安  黄培基 《海洋学报》1991,13(4):445-457
本文对Polge等人提出的“相关传递法”作了进一步数学分析,论证了其成立条件和适用范围.考虑波面偏度对谱形的影响,将模拟的靶谱加以改造,建立了“准相关传递法”.在同时考虑波剖面高度分布和谱两个条件下,对偏态海浪过程进行数值模拟.就模拟结果,分析了以Weibull分布拟合波高分布时,其波面偏度对波高分布中两参数的影响. 文中选用1980-1981年在胶州湾观测的波浪资料对“准相关传递法”加以检验和比较.结果表明:就波高分布、波面极大(小)值分布而言,准相关传递法明显优于传统的线性叠加法,比线性叠加法模拟的结果更接近于实测资料.  相似文献   

9.
为研究变浅作用下的非线性海浪,本文利用并矢相关谱估计方法,设计并进行了多种强度下,由深水传入近岸浪变浅作用下,列率谱和频率谱随水深和坡度变化的实验比较研究。  相似文献   

10.
为了拓宽建立深水非线性海浪频谱模型的研究途径,基于三阶斯托克斯波理论,提出了以改进的三阶斯托克斯波为组成波,以修正的自回归模型(AR)谱估计方法得到的估计谱(简称新谱)为靶谱的非线性海浪模型。通过基于模拟频谱和相位谱反演海浪波面高度时间序列(以下简称海浪时历反演方法)的谱比较方法验证了新谱的优越性,为从根本上解决精确评估海浪谱提供了技术支撑,对于增强未来掌控海战场具有重要意义。  相似文献   

11.
In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.  相似文献   

12.
The process of nonlinear deformation of a surface wave on shallow waters is investigated. The main attention is given to the relationship between the wave Fourier spectrum and the steepness of wave front slope. It is shown that an unambiguous relationship couples these quantities in the case of an initially sinusoidal wave, which allows estimation of the spectral composition of the wave field from the observed wave steepness.  相似文献   

13.
《Coastal Engineering》1999,38(1):1-24
This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary conditions. It is demonstrated that previous fully dispersive formulations from the literature have used an inconsistent linear relation between the velocity potential and the surface elevation. As a consequence these formulations are accurate only in shallow water, while nonlinear transfer of energy is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement with the measurements, and it is found that the accuracy of e.g., the energy spectrum and of the third-order statistics is considerably improved by the new formulations, particularly outside the shallow-water range.  相似文献   

14.
驱动非线性浅水波的行波特征研究   总被引:2,自引:1,他引:1  
采用带有外界强迫效应的浅水动力学模式研究非线性波动、获得了依赖于外界输入形式的驱动水波的行波解。研究结果表明,驱动水波仍具有非线性波动的一般性质,而当外界强迫波速与水波固有速度一致时,水波出现共振效应,并且外界强迫孤立子将导致驱动水波孤立子产生。  相似文献   

15.
Based on the 1st order cnoidal wave theory, the nonlinear wave diffraction around a circular cylinder in shallow water is studied in this paper. The equation of the wave surface around the cylinder is formulated and by using this formula the wave surface elevation on the cylinder surface can be obtained. In this paper, the formula for calculating the cnoidal wave force on a circular cylinder is also derived. For the wave conditions which are often encountered in practical engineering designs, the ratios of the nonlinear wave forces to the linear wave forces are calculated, and the results are plotted in this paper for design purposes. In order to verify the theoretical results, model tests are conducted. After comparing the test results with the theoretical ones, it is concluded that, in shallow water, for the case of T g / d~(1/2) > 8-10 and H / d > 0.3, the cnoidal wave theory should be used to calculate the wave action on a cylindrical pier.  相似文献   

16.
Abstract

In this article three main stages of tsunami wave evolution are investigated. At first, the development of disturbances from a given patched elevation of the bottom surface in an incompressible nonviscous fluid of the uniform depth is considered. Then, a tsunami wave diffraction by underwater bottom elevation or cavity is investigated. In this case the shallow water equations are already used, and it is supposed that a cylindrical wave is spread from patched water elevation over the epicentrum. Last, the tsunami propagation and transformation in a shallow water region and its run‐up on a beach are investigated on the basis of the improved shallow water theory, taking into consideration the nonlinear and dispersive terms of higher order. The proposed theory is tested in a problem of collisions of two solutions. Solutions of the first and the second problems are obtained by the method of integral Laplace's transformation with following numerical inversion of transformations. A finite difference method for a solution of the last problem is used.  相似文献   

17.
《Coastal Engineering》2006,53(2-3):149-156
Wave setup can contribute significantly to elevated water levels during severe storms. In Florida we have found that wave setup can be 30% to 60% of the total 100-year storm surge. In areas with relatively narrow continental shelves, such as many locations along the Pacific Coast of the United States, wave setup can be an even larger proportionate contributor of anomalous water levels during major storms. Wave setup can be considered as comprising two components, with the first being the well-known static wave setup resulting from the transfer of breaking wave momentum to the water column. The second, oscillating component, is a result of nonlinear transfer of energy and momentum from the primary (linear) spectrum to waves with length and time scales on the order of the wave groups.Static wave setup is the focus of this paper with emphasis on effects due to internal or surface forces that act on the wave system and cause both dissipation of wave energy and transfer of momentum. In particular, the effects of wave damping by vegetation and bottom friction are considered. Linear wave theory is applied to illustrate these effects and, for shallow water waves, the setup is reduced by two-thirds the amount that would occur if the same amount of energy dissipation occurred in the absence of forces. Effects of nonlinear waves are then considered and it is found, for a shallow water wave of approximately one-half breaking height, that a wave setdown rather than setup occurs due to damping by vegetation and bottom friction.The problem of wave setup as waves propagate through vegetation was stimulated by studies to establish hazard zones associated with 100-year storm events along the shorelines of the United States. These storms can generate elevated water levels exceeding 4 to 6 m and can result in overland wave propagation. As these waves propagate through vegetation and damp, the question arose as to the contribution of this process to elevated mean water levels through additional wave setup.  相似文献   

18.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

19.
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.  相似文献   

20.
进动(precession)共振是一种非线性共振相互作用,2016年才有学者对这一现象进行研究。采用非静压二维自由表面流模型模拟了深水条件下重力波的进动共振现象。通过边界造波的方法产生双色波,分析了触发进动共振的初始条件;探讨了进动共振在小振幅前提条件下发生的简化初始条件。数值模拟分析两组对称测点,对不同测点的波面、能量谱进行对比分析。数值结果表明:非静压二维自由表面流模型可以模拟进动共振现象,并且可以采用双色波作为条件来研究深水五波进动共振现象,进动共振需要一定的能量转化时间,进动共振发生的条件是三波组合的进动频率等于一个系统存在的非线性频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号