首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 115 毫秒
1.
机载多光谱LiDAR数据的地物分类方法   总被引:1,自引:1,他引:1  
潘锁艳  管海燕 《测绘学报》2018,47(2):198-207
机载多光谱LiDAR系统能够快速地获取大范围地表面上地物光谱和几何数据,并能够保证所获取的光谱与空间几何数据在空间和时间上相对完整和一致性。支持向量机(SVM)是一种基于小样本的学习方法,它避开了从归纳到演绎的传统分类过程。因此,本文提出了基于SVM多光谱LiDAR数据的地物目标分类方法。该方法首先将多个独立波段的LiDAR数据融合为单一的、包含多个波段信息的点云数据,然后将融合后的点云内插为距离影像和多光谱影像,最后利用SVM进行多光谱LiDAR数据的地物覆盖分类。通过对加拿大Optech公司的Titan机载多光谱LiDAR数据的试验证明:相对于传统的单波段LiDAR数据,多光谱LiDAR数据可以获得较好的地物分类精度;比较试验发现SVM分类方法适用于多光谱LiDAR数据的地物分类。  相似文献   

2.
近年来,随着三维计算机视觉的发展,三维点云深度学习方法得到越来越多学者的关注。然而,目前大多数三维点云深度学习方法仅在标准数据集上进行精度和性能评估,这些方法在设计过程中通常会根据特定数据集设定特定的学习策略以达到最佳点云分类精度,从而影响模型的泛化能力。在三维点云深度学习方法的遥感应用中,往往会出现诸如复杂的网络模型方法并不一定取得更好的数据处理精度,以及原始网络模型学习策略并不一定获得最优结果等问题。对此,为了探究学习策略对三维点云深度学习方法在实际遥感应用的影响,文中以机载多光谱LiDAR点云分类应用为例,以深度学习经典模型PointNet++为主,在分析当前学习策略的基础上构建一套较为通用的深度学习策略,以提高点云分类精度的稳定性和鲁棒性。机载多光谱LiDAR点云分类实验表明,学习策略对于点云分类精度影响不容忽视,学习策略的调整可以有效地提高模型对海量三维点云分类能力。  相似文献   

3.
机载多光谱LiDAR的随机森林地物分类   总被引:1,自引:0,他引:1  
机载多光谱LiDAR技术利用激光进行探测和测距,不仅可以快速获取地面物体的三维坐标,还可以获得多个波段的地物光谱信息,可广泛用于地形测绘、土地覆盖分类、环境建模、森林资源调查等。本文提出了多光谱LiDAR的随机森林地物分类方法。该方法通过对LiDAR强度数据和高程数据提取分类特征,完成多光谱LiDAR的随机森林地物分类;并分析随机森林的特征贡献度特性,采用后向特征选择方法实现分类特征选择。通过对加拿大Optech Titan多光谱LiDAR数据的试验表明:随机森林方法可以获得较好的地物分类精度,而且可以适当地去除部分冗余和相关的特征,从而有效提高分类精度。  相似文献   

4.
机载LiDAR点云的分类是利用其进行城市场景三维重建的关键步骤之一。为充分利用现有的图像领域性能较好的深度学习网络模型,提高点云分类精度,并降低训练时间和对训练样本数量的要求,本文提出一种基于深度残差网络的机载LiDAR点云分类方法。首先提取归一化高程、表面变化率、强度和归一化植被指数4种具有较高区分度的点云低层次特征;然后通过设置不同的邻域大小和视角,利用所提出的点云特征图生成策略,得到多尺度和多视角点云特征图;再将点云特征图输入到预训练的深度残差网络,提取多尺度和多视角深层次特征;最后构建并训练神经网络分类器,利用训练的模型对待分类点云进行预测,经后处理得到分类结果。利用ISPRS三维语义标记竞赛的公开标准数据集进行试验,结果表明,本文方法可有效区分建筑物、地面、车辆等8类地物,分类结果的总体精度为87.1%,可为城市场景三维重建提供可靠的信息。  相似文献   

5.
为了利用机载激光雷达点云生成高保真、多尺度的数字高程模型(DEM),提出了一种基于综合生成策略的方法:首先,利用点云数据中的地面点生成高分辨率、高保真的DEM作为基础DEM;然后,通过迭代的方式对上一层较高分辨的DEM进行综合获取较低分辨率、高保真的DEM。实验表明,本文方法不仅具有可行性,而且生成的多尺度DEM具有高保真的特性。  相似文献   

6.
为提高激光雷达点云自动分类程度,提出了一种新型激光点云分类方法。在TerraSolid软件中,结合点云滤波、影像解译和特征要素采集等技术进行点云分类,并基于新昌县点云分类数据进行实验。结果表明,该方法可快速准确地分类建筑物,减少了大量手动编辑分类工作,加强了自动化分类程度,可大大提高工作效率。  相似文献   

7.
目前,机载LiDAR系统获取的点云数据具有多回波的特性,回波特性可以揭示地物的类型信息。本文在排除粗差、首次回波和中间次回波后,对单次回波和尾次回波形成的点云子集进行基于3DHough变换分割和滤波处理以区分地面点和非地面点(包括墙面点),然后合并首次回波、中间次回波和非地面点再次进行点云分割,利用分割面片的尺寸大小、单次回波激光脚点比例、首次回波和中间次回波激光脚点比例等三个指标区分建筑物激光脚点和植被激光脚点。实验证明,上述方法可以很好地将点云数据分类为墙面点、地面点、建筑物点和植被点。  相似文献   

8.
介绍了一种利用Terrasolid软件进行机载与车载LiDAR点云数据融合的方法,通过分析两种扫描系统采集点云之间的共性与特性,制定了融合取舍原则,得到了覆盖范围全面的LiDAR点云融合成果,为LiDAR点云数据的应用和推广提供了良好的基础。  相似文献   

9.
在城区的机载LiDAR点云中一般存在大量打在树木上的点,从点云中提取的树木点可以应用于城区绿化面积和树木参数的估计,以及树木的建模。针对城区环境,本文在综合分析树木点和其他地物空间分布模式的基础上,提出了一种只利用点云的几何性质,结合点云空间分布模式来提取树木点的方法。实验表明,该方法可以取得很高的分类精度,卡帕系数为0.9713。  相似文献   

10.
宋新龙  田耀永 《测绘通报》2012,(Z1):317-319
在对机载LiDAR扫描数据的深加工处理方法阐述的基础上,对其数据产品应用进行了简单探讨。  相似文献   

11.
针对车载激光雷达点云数据量大、密度高且存在分层错位和噪点等情况,提出了一种具实时性激光点云快速栅格化算法,该算法根据雷达扫描精度预设栅格单元大小,可在不丢失对象形状特征的情况下,能快速完成点云数据平滑及降采样处理,并将数据量缩小为处理前的60%。将该栅格算法处理后的点云数据应用于深度学习,作为pointnet++神经网络的训练集及测试集,完成语义分割模型训练与测试。实验结果表明,该算法可在1s内完成上百万量级的点云栅格处理,并且经该算法处理后的点云数据能有效缩短训练时长、提升网络测试精度。  相似文献   

12.
A method is presented for filtering and classification of terrestrial laser scanner point clouds. The algorithm exploits the four-channel (blue, green, red and near infrared) multispectral imaging capability of some terrestrial scanners using supervised, parametric classification to assign thematic class labels to all scan cloud points. Its principal advantage is that it is a completely data-driven algorithm and is independent of spatial sampling resolution since the processing is performed in four-dimensional spectral feature space. Its application to two data-sets of different spatial extent and spatial and spectral complexity is reported, for which respective overall classification accuracies of 87·0% and 82·0% were achieved. Analysis of the input data with emphasis on the characteristics pertinent to the anticipated outcomes precedes detailed analysis of the classification results and error sources and their causes. Erroneously classified points are attributed to radiometric errors stemming from both detector hardware and physical effects.  相似文献   

13.
针对车载激光雷达点云初始聚类中心难以确定的问题,该文提出了一种基于最大网格密度的近邻聚类算法对点云实现分割,并以高程、法向量和投影密度作为约束条件对分割后的点云块进行地物的分类识别。通过对车载激光雷达的部分点云数据进行相关试验,结果表明该方法可以精确有效地实现城市典型地物分类。  相似文献   

14.
随着数字城市的发展,城市三维模型重建对三维点云结构化的需求与精度要求越来越高。如何有效准确地分割室内语义模型与三维重构是当前研究的热点问题。点云分割分类是室内点云结构化的重要基础,如何将粘连点云构件进行准确分割并用于室内点云结构化,是当前城市建模的难点。本文提出了一种面向室内粘连点云数据的分割分类方法。首先,利用深度学习网络处理室内点云数据;其次,对点云数据进行标签分类,得到目标标签点云;然后,利用欧氏算法对目标点云进行聚类分割,通过室内语义构件包围盒信息计算各目标中心点坐标与水平半径;最后,利用点云最小割实现室内粘连点云的准确分割。利用3组室内场景中获取的数据对分割方法的精度及有效性进行了验证。结果表明,该分割优化方法具有较高的精度与数据完整性。  相似文献   

15.
机载LiDAR点云数据分类技术是LiDAR数据后处理的关键步骤。信息向量机、相关向量机及支持向量机可以在LiDAR点云数据分类中发挥重要作用。本文将三种分类器应用到点云数据分类中,通过实验验证了它们在点云数据分类中的性能,总结了它们在点云数据分类任务中的应用潜力。  相似文献   

16.
机载LiDAR点云获取与高精度DEM建设关键技术探讨   总被引:1,自引:0,他引:1  
结合广东省机载LiDAR点云获取与高精度DEM建设项目,介绍了项目总体技术路线,针对项目难点,从设备选择、点云密度设计、植被覆盖密集山区数据获取方法、点云数据分类组合算法、空白区处理等5个方面的关键技术进行了探讨,并提出解决方案,为同类项目的设计与实施提供参考。  相似文献   

17.
崔驿宁  窦爱霞  杨慎宁 《遥感学报》2023,27(8):1876-1887
针对震后复杂场景下LiDAR点云建筑物破坏类型自动识别问题,为满足应急救援时效性、准确性需求,告别传统人工震害特征提取,充分挖掘点云数据中灾区建筑物震害信息,进一步实现建筑物自动化智能化识别。本文将3D点云深度学习方法应用于建筑物震害识别,构建了包含倒塌、局部倒塌、未倒塌3种建筑物破坏类型的点云数据集。基于PointNet++网络探究了各类别样本量及其均衡性对识别精度的影响,并提出破坏建筑物样本增强方法,丰富了各类别样本点云形态。利用2010年海地7.0级地震后机载LiDAR数据,在PointNet++网络中进行了样本增强前后分类精度比较、样本量以及均衡性分析实验,样本增强后倒塌和局部倒塌的分类精度分别提高近27%和17%,模型整体平均分类精度、Kappa系数均有近15%的提升。实验结果表明三维建筑物震害深度学习模型在各类别样本量足够且均衡时,才能取得较好的分类识别效果。  相似文献   

18.
LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping.  相似文献   

19.
This paper investigates the synergistic use of high-resolution multispectral imagery and Light Detection and Ranging (LiDAR) data for object-based classification of urban area. The main contribution of this paper is the development of a semi-automated object-based and rule-based classification method. In the implemented approach, the diverse knowledge about land use/land cover classes are transformed into a set of specialized rules. Further, this paper explores supervised Gaussian Mixture Models for classification, which have been primarily used for unsupervised classification. The work is carried out on test data from two different sites. Contribution of the LiDAR data resulted in a significant improvement of overall Kappa. Accuracy assessment carried out for aforementioned classification methods shows higher overall kappa for both the study sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号