共查询到17条相似文献,搜索用时 62 毫秒
1.
机载多光谱LiDAR数据的地物分类方法 总被引:1,自引:1,他引:1
机载多光谱LiDAR系统能够快速地获取大范围地表面上地物光谱和几何数据,并能够保证所获取的光谱与空间几何数据在空间和时间上相对完整和一致性。支持向量机(SVM)是一种基于小样本的学习方法,它避开了从归纳到演绎的传统分类过程。因此,本文提出了基于SVM多光谱LiDAR数据的地物目标分类方法。该方法首先将多个独立波段的LiDAR数据融合为单一的、包含多个波段信息的点云数据,然后将融合后的点云内插为距离影像和多光谱影像,最后利用SVM进行多光谱LiDAR数据的地物覆盖分类。通过对加拿大Optech公司的Titan机载多光谱LiDAR数据的试验证明:相对于传统的单波段LiDAR数据,多光谱LiDAR数据可以获得较好的地物分类精度;比较试验发现SVM分类方法适用于多光谱LiDAR数据的地物分类。 相似文献
2.
近年来,随着三维计算机视觉的发展,三维点云深度学习方法得到越来越多学者的关注。然而,目前大多数三维点云深度学习方法仅在标准数据集上进行精度和性能评估,这些方法在设计过程中通常会根据特定数据集设定特定的学习策略以达到最佳点云分类精度,从而影响模型的泛化能力。在三维点云深度学习方法的遥感应用中,往往会出现诸如复杂的网络模型方法并不一定取得更好的数据处理精度,以及原始网络模型学习策略并不一定获得最优结果等问题。对此,为了探究学习策略对三维点云深度学习方法在实际遥感应用的影响,文中以机载多光谱LiDAR点云分类应用为例,以深度学习经典模型PointNet++为主,在分析当前学习策略的基础上构建一套较为通用的深度学习策略,以提高点云分类精度的稳定性和鲁棒性。机载多光谱LiDAR点云分类实验表明,学习策略对于点云分类精度影响不容忽视,学习策略的调整可以有效地提高模型对海量三维点云分类能力。 相似文献
3.
机载多光谱LiDAR的随机森林地物分类 总被引:1,自引:0,他引:1
机载多光谱LiDAR技术利用激光进行探测和测距,不仅可以快速获取地面物体的三维坐标,还可以获得多个波段的地物光谱信息,可广泛用于地形测绘、土地覆盖分类、环境建模、森林资源调查等。本文提出了多光谱LiDAR的随机森林地物分类方法。该方法通过对LiDAR强度数据和高程数据提取分类特征,完成多光谱LiDAR的随机森林地物分类;并分析随机森林的特征贡献度特性,采用后向特征选择方法实现分类特征选择。通过对加拿大Optech Titan多光谱LiDAR数据的试验表明:随机森林方法可以获得较好的地物分类精度,而且可以适当地去除部分冗余和相关的特征,从而有效提高分类精度。 相似文献
4.
机载LiDAR点云的分类是利用其进行城市场景三维重建的关键步骤之一。为充分利用现有的图像领域性能较好的深度学习网络模型,提高点云分类精度,并降低训练时间和对训练样本数量的要求,本文提出一种基于深度残差网络的机载LiDAR点云分类方法。首先提取归一化高程、表面变化率、强度和归一化植被指数4种具有较高区分度的点云低层次特征;然后通过设置不同的邻域大小和视角,利用所提出的点云特征图生成策略,得到多尺度和多视角点云特征图;再将点云特征图输入到预训练的深度残差网络,提取多尺度和多视角深层次特征;最后构建并训练神经网络分类器,利用训练的模型对待分类点云进行预测,经后处理得到分类结果。利用ISPRS三维语义标记竞赛的公开标准数据集进行试验,结果表明,本文方法可有效区分建筑物、地面、车辆等8类地物,分类结果的总体精度为87.1%,可为城市场景三维重建提供可靠的信息。 相似文献
5.
6.
7.
目前,机载LiDAR系统获取的点云数据具有多回波的特性,回波特性可以揭示地物的类型信息。本文在排除粗差、首次回波和中间次回波后,对单次回波和尾次回波形成的点云子集进行基于3DHough变换分割和滤波处理以区分地面点和非地面点(包括墙面点),然后合并首次回波、中间次回波和非地面点再次进行点云分割,利用分割面片的尺寸大小、单次回波激光脚点比例、首次回波和中间次回波激光脚点比例等三个指标区分建筑物激光脚点和植被激光脚点。实验证明,上述方法可以很好地将点云数据分类为墙面点、地面点、建筑物点和植被点。 相似文献
8.
介绍了一种利用Terrasolid软件进行机载与车载LiDAR点云数据融合的方法,通过分析两种扫描系统采集点云之间的共性与特性,制定了融合取舍原则,得到了覆盖范围全面的LiDAR点云融合成果,为LiDAR点云数据的应用和推广提供了良好的基础。 相似文献
9.
10.
在对机载LiDAR扫描数据的深加工处理方法阐述的基础上,对其数据产品应用进行了简单探讨。 相似文献
11.
12.
机载LiDAR点云获取与高精度DEM建设关键技术探讨 总被引:1,自引:0,他引:1
结合广东省机载LiDAR点云获取与高精度DEM建设项目,介绍了项目总体技术路线,针对项目难点,从设备选择、点云密度设计、植被覆盖密集山区数据获取方法、点云数据分类组合算法、空白区处理等5个方面的关键技术进行了探讨,并提出解决方案,为同类项目的设计与实施提供参考。 相似文献
13.
针对航空和地面LiDAR数据配准中点云数据的共轭特征较少且精度差异较大的问题,提出了一种基于可移动角点的航空和地面LiDAR数据配准方法:从航空和地面LiDAR数据中分别提取相应的建筑物角点,采用6参数模型对角点进行初始配准;以地面角点为参照,利用迭代移动方法对误差较大的航空角点进行修正;最后根据移动后的航空和地面角点计算获得点云配准关系。实验结果表明,该文方法可取得较好的点云配准效果,角点修正后能有效提升点云配准精度,适合于含有角点特征的航空和地面LiDAR数据配准。 相似文献
14.
This paper investigates the synergistic use of high-resolution multispectral imagery and Light Detection and Ranging (LiDAR) data for object-based classification of urban area. The main contribution of this paper is the development of a semi-automated object-based and rule-based classification method. In the implemented approach, the diverse knowledge about land use/land cover classes are transformed into a set of specialized rules. Further, this paper explores supervised Gaussian Mixture Models for classification, which have been primarily used for unsupervised classification. The work is carried out on test data from two different sites. Contribution of the LiDAR data resulted in a significant improvement of overall Kappa. Accuracy assessment carried out for aforementioned classification methods shows higher overall kappa for both the study sites. 相似文献
15.
16.
17.
基于多尺度虚拟网格与坡度阈值的机载LiDAR点云滤波方法 总被引:1,自引:0,他引:1
点云滤波是机载LiDAR数据后处理的基础工作,本文提出一种基于多尺度虚拟网格与坡度阈值的机载LiDAR点云滤波方法.该方法采用类似影像金字塔的方式构建不同尺度即不同分辨率的虚拟网格,各级网格都以每个方格内最低点作为地面种子点,然后根据坡度阈值以分辨率由低到高的方式逐层对种子点进行平滑处理,最后以最高分辨率即最小尺度虚拟网格地面种子点作为基准种子点对整个数据集进行滤波处理.本文分别采用城区与郊区两块机载LiDAR数据进行了实验.实验表明,该方法能够有效地提取出地面点,运算效率也比较高,具有一定的实用价值. 相似文献