首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为深入研究脉冲超声波激励对煤体孔隙结构的改造效应,利用含瓦斯煤体超声波激励实验系统,开展超声波功率800和1 000 W持续、交互脉冲下煤的超声波激励实验,综合低压CO2吸附、低温N2吸附和高压压汞等实验,研究煤的大孔(>50 nm)、介孔(2~50 nm)、微孔(<2 nm)全孔径段的孔隙参数演化规律。实验结果表明:脉冲超声波对煤的孔隙具有扩孔效应,煤的孔容占比以微孔和大孔为主,介孔占比最小,煤中各孔径段比表面积大小为:微孔>介孔>大孔;与未超声、持续超声激励煤样相比,脉冲超声波激励煤的各孔径段孔容和比表面积均有所提高;随脉冲次数增加,煤的孔容增幅和比表面积增幅呈正线性增大,其中大孔的孔容和比表面积增幅较为显著。脉冲超声波激励煤样形成水锤压力阶段和滞止压力阶段的持续转换,增加了煤的孔隙结构损伤程度。研发脉冲超声波发射器结合水力化技术,可提高煤的孔隙发育程度,增加煤体渗透性,提高瓦斯抽采效率。  相似文献   

2.
为了探讨煤的微孔介孔演化特征及其成因,在华北二叠纪煤盆地,采取7个不同煤化程度的煤样,分别采用低压CO2吸附法和液氮吸附法对各煤样的纳米孔隙进行表征;基于密度泛函理论、DA(Dubinin—Astakhov)、DR(Dubinin—Radushkevich)、BET、BJH等方程计算孔隙表面参数;分析煤的微孔(孔径<2 nm)和介孔(孔径2~50 nm)的孔径分布、孔容和比表面积随煤级变化的规律;并探讨微孔形成的主控因素及介孔的形成机制。研究结果表明:微孔孔容和比表面积与煤的镜质体反射率高度正相关,微孔在吸附中占绝对支配性主导地位;微孔孔径分布曲线呈双峰分布,不同煤级煤样的曲线形态相似,极微孔随煤级增加最快;介孔比表面积和孔容随煤级增加逐渐下降,介孔孔径分布呈单峰分布,随着煤级的增加,煤的BET比表面积先减少后增加,呈U形分布;微孔的形成应主要受控于煤的类微晶参数和芳香层片间的堆垛结构,而介孔的形成应主要受控于煤侧链的变化和煤的基本结构单元间隙。  相似文献   

3.
本次研究以四川盆地南部(川南地区)上二叠统龙潭组煤系页岩为例,利用场发射扫描电镜(FE-SEM)对页岩孔隙进行定性观察分析,联用高压压汞实验、N2与CO2吸附-脱附实验,以及CH4等温吸附实验开展海陆过渡相煤系页岩全孔径孔隙结构特征的定量表征,并探讨孔隙结构对含气性的影响。海陆过渡相煤系页岩粒间孔、粒内孔和有机质孔等基质孔隙较为发育,微裂缝较少。孔隙形态以平板狭缝状和墨水瓶状为主,具有较好的开放性特征。页岩全孔径孔容分布曲线呈两极化分布,孔径小于30nm和大于5μm的孔隙大量发育。宏孔(>50 nm)、介孔(2~50 nm)和微孔(<2 nm)的孔容贡献率依次降低,分别占42.2%、36.3%和21.4%。页岩孔比表面积分布曲线呈单峰型分布,随着孔径增大,孔比表面积减小,微孔尤其是孔径值小于8 nm的孔隙提供较大的孔比表面积。微孔、介孔和宏孔的孔比表面积贡献率依次降低,分别占72.7%、25.0%和2.3%。龙潭组页岩总含气量为2.61~6.02 m3/t,其中吸附气比例占优势,含量为1...  相似文献   

4.
为了定量表征煤的孔隙结构,研究煤孔隙特征与吸附性能的内在联系,采用低温液氮吸附法(LP-N2GA)、CO2吸附法、扫描电镜(SEM)和孔隙-裂隙分析系统(PCAS)对6种不同变质程度煤样进行孔隙相关分析.煤样孔隙分布相似时,煤样对N2和CO2的吸附能力、孔隙率的近似概率密度和孔隙面积(中孔)与煤的挥发分呈负相关,煤样孔隙的分形维数与煤的挥发分呈正相关.煤样的孔隙分布差异较大时,煤样对N2和CO2的最大吸附容量与孔隙分布有关.建立了煤纳米孔结构的联合表征模式,该表征模式能够更有效地研究和分析煤中的孔隙,包括孔隙数目、孔隙面积、孔隙周长、平均形状因子、孔隙率、分形维数和孔径分布,将SEM-PCAS与气体吸附方法相结合对煤的孔隙结构进行定量联合表征的模式是可行的.   相似文献   

5.
高阶煤中的CO2地质埋藏具有存储CO2和提高煤层气采收率的双重意义。通过压汞测试和低温液氮吸附实验对经过CO2地质埋藏模拟实验处理前后的煤样品进行分析测试,探讨了不同埋藏深度下煤中孔隙演化的特征与机理。研究表明:煤的真密度、视密度、孔隙体积、煤基质体积变化、有机质膨胀与收缩等参数均表现出不同的演化特征;埋藏过程中温度压力的增大对H2O–CO2–煤的地球化学反应效应的影响并非线性,而是存在一个对孔隙特别是微孔孔容和比表面积改造最大的深度范围,该深度将使得高阶煤孔隙结构得到最佳的改造效果,从而进一步更有利CO2的地质埋藏和提高煤层气的采收率。  相似文献   

6.

为揭示深部煤层注入CO2过程中,超临界CO2(SC-CO2)对构造煤微观结构的影响规律,以山西大平矿贫煤和贵州振兴矿无烟煤样品为研究对象,对两类不同破坏程度的高阶煤进行萃取实验,比较了萃取前后煤中孔隙结构和芳香碳网结构参数的差异,探讨了SC-CO2对不同破坏程度的高阶煤微观结构的影响机制。研究表明:(1)随着破坏程度增加,两类高阶煤的孔容、孔比表面积增大,孔隙连通性变好。孔径>4 nm时,构造煤分形维数增大,孔隙结构更加复杂。(2) SC-CO2作用下,两类煤的平均孔径明显增大,孔隙分形维数减小,孔隙结构趋于简单化。而不同破坏程度煤的孔容、比表面积、孔隙连通性呈现复杂的变化,表现为SC-CO2作用后,大平矿的构造煤微孔、介孔段比表面积和孔容显著减小,使得总比表面积和总孔容亦明显减小,孔隙连通性变差;振兴矿构造煤的介孔比表面积和孔容显著增大,使得总比表面积和总孔容增加。(3) SC-CO2萃取作用下,不同破坏程度的高阶煤的碳网层间距d002增大,而延展度La、堆砌度Lc和芳香层数Nc呈减小趋势,且随着破坏程度的增加相应的变化趋于显著,促使不同破坏程度煤的碳网层参数趋于一致。研究认为,SC-CO2与煤岩反应产物溶离煤体引起的扩孔效应,促使煤样平均孔径增大,而产物生成量不同和产物滞留造成的堵孔效应,是引起两类不同破坏程度的高阶煤孔隙差异性变化的主要原因; SC-CO2流体对两类高阶煤的芳香碳网层结构参数的影响与构造破坏作用相反,前者表现为疏松作用,而后者主要为压密作用。\t\t\t\t

  相似文献   

7.
为了研究中梁山矿区煤的孔隙性、吸附性特征,选取8组煤样分别进行煤镜质组反射率测试、压汞实验和高压等温吸附实验分析。研究表明:(1)大孔和微孔对煤总孔容的控制明显,过渡孔和中孔影响小,微孔对煤比表面积的贡献最大;(2)煤中孔隙以开放孔为主,并具有相当数量的半封闭孔,孔隙连通性总体较好;(3)在中低煤级阶段,一般煤的孔隙度、孔容和比表面积均随变质程度的增大而减小;(4)煤的最大吸附量与总孔容、总比表面积呈正相关性。  相似文献   

8.
深部煤层CO2地质封存是助力“碳达峰碳中和”战略的重要途径,煤层含水性对以CO2吸附封存为主的深部煤层CO2地质封存能力影响显著。以无烟煤为例,开展了45℃下干燥、平衡水、饱和水煤样高压CO2等温吸附实验,校正了饱和水煤样过剩吸附曲线,利用改进的D-R吸附模型拟合得到三者吸附能力与吸附热,对比了不同含水条件下CO2绝对吸附曲线,阐释了饱和水增强无烟煤吸附能力的微观作用机理。结果表明:(1)干燥、平衡水、饱和水煤样CO2吸附能力分别为56.72、45.19和48.36 cm3/g,吸附热分别为29.42、26.23和27.24 kJ/mol。(2) CO2密度小于0.16 g/cm3(6.48 MPa)时,无烟煤CO2绝对吸附量大小顺序为干燥煤样、饱和水煤样和平衡水煤样,而CO2进入超临界状态后,顺序变为饱和水煤样、干燥煤样和平衡水煤样。(3)水分子优先占据高能吸附位是平衡水煤样吸附能力减弱的主要原因,而煤?水体系与CO2相互作用强于CO2与H2O竞争吸附下的煤?CO2相互作用是饱和水煤样在CO2超临界阶段吸附能力高于干燥煤样的根本原因。(4)吸附封存是煤层CO2地质封存的主要形式,深部煤储层条件下,煤层饱和水对超临界CO2增储作用更为明显,高压注水是提高深部煤层CO2地质封存潜力,改善煤储层渗透性的有效手段。   相似文献   

9.
二元气驱技术(CO2/N2-ECBM)已成为煤层气增产的重要手段,明确CO2/N2在煤层中的竞争吸附规律以及对煤层物性的影响具有重大意义。利用分子模拟软件Materials Studio建立延川南煤层气实际区块温度、压力条件下的煤分子模型。基于巨正则蒙特卡洛(GCMC)方法研究CO2/N2交替驱替煤层气技术中各注入阶段对CH4吸附的影响,明确CO2、N2对煤层孔渗物性的影响规律。结果表明:在CO2注入阶段,煤层中甲烷迅速解吸;煤中气体吸附总量上升,煤基质膨胀效应增强,导致煤的孔隙体积降低。而转N2注入后,由于N2分压作用使得CH4、CO2吸附量呈现出不同程度的降低;当ωN2CO2≤0.6时煤分子中气体总吸附量迅速降低,而当N2饱和吸附后气体总吸附量保持稳定。煤层孔渗物性随着气体吸附总量呈现出迅速增大后趋于平缓的趋势。此外,ωN2CO2>0.6后N2吸附率迅速降低,这会使得产出气中CH4纯度较低,导致后期提纯成本大大增加。因此,当ωN2CO2=0.6左右时,CH4解吸量为最大值,煤孔隙率较高,最有利于煤层气的开发。   相似文献   

10.
李建楼 《地质与勘探》2020,56(4):838-844
煤体结构是煤与瓦斯突出防治和煤与瓦斯共采的重要地质因素之一。为了区分煤体结构在地应力作用下的破坏程度,采集了淮北矿业股份有限公司桃园煤矿8283采煤工作面煤样,基于自相似原理和实验室内对煤样的加压模拟实验,通过煤基质纳米级孔隙在低温氮吸附-解吸曲线上的响应对比分析,建立了低温氮吸附法判识煤体结构的方法,并对淮北矿业股份有限公司桃园煤矿10号煤层内1026和1035工作面煤体宏观结构及微观孔隙发育特征进行了对比研究。结果表明,煤体微观孔隙结构变化与构造煤发育程度密切相关;随着煤体破坏程度的提高,在吸附-解吸曲线上表现为吸附量明显增大,纳米级孔隙的比表面积和比孔容明显增加,平均孔径略有增加;构造煤解吸曲线上有明显的陡降点,而原生结构煤的解吸曲线不具有这个特征。  相似文献   

11.
为探究高压气体吸附-解吸试验对煤基质中孔隙发育规模和结构的影响,选取安鹤矿区鹤壁六矿二1煤层煤样进行了高压氮气置换甲烷吸附-解吸试验,采用低温液氮吸附方法分别测定了高压氮气置换甲烷前后煤的低温液氮吸附解吸曲线,利用BET、BJH和QSDFT 3种分析模型,对煤基质中1.14~300 nm的孔隙规模、分布与结构特征进行了对比分析。分析结果显示煤样的孔容、比表面积和孔隙结构在高压气体置换过程中均发生了变化,孔隙BET比表面积从12.746 0 m2/g降低到7.227 0 m2/g,总孔容从0.009 0 cm3/g降低到0.006 6 cm3/g;孔隙发育规模与孔径分布均发生明显变化,但孔隙形态基本保持不变,孔径分布的变化主要表现为微孔孔容与比表面积的降低为主,而中孔和大孔基本保持不变。  相似文献   

12.
低阶煤甲烷吸附特性研究对瓦斯含量预测、瓦斯抽采及危害防治有着重要意义,为此,选取陕西6个典型矿井低阶煤样,进行低温氮吸附、低压二氧化碳吸附及甲烷等温吸附实验,获得低阶煤吸附孔结构特征。利用微孔填充及单分子层吸附理论定量表征甲烷吸附特征参数与吸附孔结构参数之间的关系,明确吸附孔中甲烷吸附机理。结果表明:吸附孔的比表面积主要由微孔提供,甲烷吸附能力主要受吸附孔孔容大小控制,微孔孔容对吸附孔总孔容的贡献率在74.71%~88.97%。甲烷极限吸附量与吸附孔平均孔径呈线性负相关,与吸附孔孔容、比表面积呈线性正相关,Langmuir压力常数随吸附孔平均孔径、孔容和比表面积的增加仅在小范围内波动,无明显线性相关。6个低阶煤样的分形特征明显,综合分形维数为2.573~2.720,平均值为2.647,说明低阶煤吸附孔非均质性强,甲烷极限吸附量随分形维数增加先增加后减小,整体呈上升趋势。基于微孔填充和单分子层吸附理论可以定量表征低阶煤吸附孔结构与甲烷吸附能力之间的关系,甲烷极限吸附量计算值与实验测试值相对误差较小,长焰煤相对误差为4.47%~6.65%,不黏煤为13.77%~16.02%。研究成果可为后...  相似文献   

13.
碎软煤的完整原样制取困难,需要加工制成重塑煤体,为了研究不同压制荷载对煤体物性特征的影响,以重塑煤体为研究对象,基于低温液氮的孔隙测试实验和高压容量法的甲烷吸附实验,探讨不同成型荷载而成的重塑煤体的微小孔结构及其吸附特性的差异。结果表明:不同成型荷载压制而成的重塑煤体,其微孔和小孔的孔容随着成型荷载的增大而略微减少,孔比表面积随着成型荷载的增大而略微增加,总孔体积减少和孔比表面积增加的幅度不大;通过分形理论发现无论高压段还是低压段,孔隙结构具有明显的分形特征,且在高压段的分形维数普遍低于低压段,不同荷载压制而成的重塑煤体的分形维数差别不大;等温吸附线均符合第Ⅰ类等温吸附曲线,Langmuir模型适用于描述重塑煤体的等温吸附,成型荷载对煤的吸附常数有一定的影响,其对吸附常数b值的影响大于对a值的影响。研究不同成型荷载下重塑煤体的吸附特性,为不同条件下型煤制作及冷冻取心实验提供参考。  相似文献   

14.
华北南部构造煤纳米级孔隙结构演化特征及作用机理   总被引:14,自引:2,他引:14  
构造煤是在构造应力作用下,煤体发生变形或破坏的一类煤,在世界主要产煤国家皆有分布。构造变形不同程度的改变着煤的大分子结构和化学成分,而且也影响到构造煤的纳米级孔隙结构(<10 0 nm ) ,它是煤层气的主要吸附空间。通过构造煤显微组分和镜质组油浸最大反射率的测定,采用液氮吸附法对不同变质变形环境、不同变形系列构造煤的纳米级孔隙分类、孔隙结构特征进行了深入系统的研究,并结合高分辨透射电子显微镜和X射线衍射对大分子结构和孔隙结构的分析,结果表明:不同类型构造煤纳米级孔径结构自然分类,可将孔径结构划分为过渡孔(15~10 0 nm )、微孔(5~15 nm )、亚微孔(2 .5~5 nm )和极微孔(<2 .5 nm ) 4类。低煤级变形变质环境中随着构造变形的增强,不同类型构造煤过渡孔孔容明显降低,微孔及其下孔径段孔容明显增多,可见亚微孔和极微孔,过渡孔的比表面积大幅度降低,而亚微孔的却增加得较快。从脆韧性变形煤至韧性变形煤,总孔体积、累积比表面积、N2 吸附量随着构造变形的增强,这些结构参数均迅速增加,但中值半径进一步下降。非均质结构煤孔隙参数与弱脆性变形煤相当。中、高煤级变形变质环境形成的各种类型构造煤与低煤级变质变形环境相比,孔隙参数的变化基本一致。但不同类型构造煤的变化又有所区别  相似文献   

15.
泥页岩孔隙特征是页岩气藏储集能力及可开采性评价的关键参数。以鄂尔多斯盆地南部铜川地区瑶科一井延长组泥页岩样品为研究对象,通过扫描电镜、低温氮气吸附等实验手段,对延长组各段泥页岩孔隙特征及影响孔隙发育的控制因素进行了研究。研究表明:鄂尔多斯盆地南部延长组泥页岩孔隙类型主要有粒间孔、粒内孔、黄铁矿晶间孔、溶蚀孔、微裂缝,其中黏土矿物粒间孔最发育,有机孔基本不发育。延长组不同段的纳米孔隙发育特征有明显的差异性,长9段微孔含量相对较高,BET比表面积较大,长8段中孔比例较高,孔隙形态都以管状孔和平行壁的狭缝状孔为主;长7段有最大的宏孔比例和最小的微孔比例,比表面积最小,孔隙含有相对较多的封闭型孔,还有一端或两端开口的楔V型孔;长6段孔隙比例、比表面积大小介于其他各段之间,以平行板状的狭缝型孔隙为主。黏土矿物含量、石英含量是控制孔隙发育的主要因素,而孔隙总体积、比表面积与TOC含量基本呈负相关关系,这主要是由于孔隙中的残留烃对孔隙的堵塞作用,抽提后可以发现样品孔隙总体积、比表面积都有所增加。  相似文献   

16.
为了探讨中-高煤级深部煤层孔隙结构特征和吸附性,以陕西宜川和山西柿庄地区埋深100~1 800 m的中-高煤级样品为研究对象,对样品进行了煤岩煤质分析以及压汞法、核磁共振、低温液氮和等温吸附等测试,结果表明:(1)随着深度的增加,煤层吸附孔含量增多,渗流孔含量减小,渗透性降低,储层物性变差。(2)比表面积和总孔体积在1 000 m附近出现高值区域,随后才出现如前人所述的随深度逐渐降低的趋势,这与小孔的贡献率一致,可见比表面积和总孔体积并非完全由微孔决定,小孔作用显著。(3)深部煤层吸附性是压力的正效应与温度的负效应共同作用的结果,随着压力的增高,吸附量明显增加,温度每升高1 ℃,吸附量平均减少0.25 cm3/g;兰氏压力并不是简单地随温度递增而递增,而是存在随温度变化的拐点(35 ℃),大于拐点温度时,兰氏压力才呈现增高趋势。  相似文献   

17.
为了研究高煤级煤储层含水性对吸附能力的影响,对阳泉-寿阳区块8件代表性煤样开展了镜质体反射率、显微组分、孔隙度、压汞、核磁共振和甲烷等温吸附等实验,分析了煤储层孔径分布、核磁共振T2谱响应特征、核磁孔隙度以及煤岩吸附能力,同时对煤储层含水性和煤储层吸附能力的相互关系进行了分析。研究结果表明:高煤级煤储层孔隙以微孔发育为主,孔隙含水性以微小孔中的束缚水赋存状态为主,且其含水量随最大镜质体反射率(Ro,m)的增大而增加。在影响高煤级煤储层吸附能力的多种因素中,煤储层含水性对煤岩吸附能力起着决定性的作用,尤其体现在微小孔中的束缚水对吸附能力的影响,束缚水含量越高,煤岩吸附能力越差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号