首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global database on the paleointensity, containing determinations of the virtual dipole moment (VDM) for a stable (normal) regime of the geomagnetic field in a time interval of up to 3.5 Ga, is supplemented by new VDM determinations and analyzed. The field generation process started no later than 3–3.5 Ga (earlier data are absent) at the stage of the Earth’s core formation. Since that time, the dipole value has differed from its present value by no more than an order of magnitude, and the deviations that have already been detected tend toward smaller values. The distribution of VDM values in the time interval 0–400 Ma is bimodal, which apparently reflects the presence of two different generation levels of the geomagnetic field distinguished by a relatively large value (close to the present field value) and a relatively small value (approximately half as large as the present value). The total duration of decreased VDM values appreciably exceeds that of increased VDM values (179.1 and 28.6 Myr, respectively). On the whole, data on the paleointensity do not contradict the hypothesis about the dipole nature of the field over the last 400 Myr; however, the number of determinations at high paleolatitudes is too small to draw decisive conclusions on the validity (or invalidity) of the dipole field approximation based solely on paleointensity data.  相似文献   

2.
The intensity of the geomagnetic field varies over different time scales. Yet, constraints on the maximum intensity of the field as well as for its maximum rate of change are inadequate due to poor temporal resolution and large uncertainties in the geomagnetic record. The purpose of this study is to place firm limits on these fundamental properties by constructing a high-resolution archaeointensity record of the Levant from the 11th century to the early 9th century BCE, a period over which the geomagnetic field reached its maximum intensity in Eurasia over the past 50,000 years. We investigate a 14C-dated sequence of ten layers of slag material, which accumulated within an ancient industrial waste mound of an Iron Age copper-smelting site in southern Israel. Depositional stratigraphy constrains relative ages of samples analyzed for paleointensity, and 14C dates from different horizons of the mound constrain the age of the whole sequence. The analysis yielded 35 paleointenisty data points with accuracy better than 94% and precision better than 6%, covering a period of less than 350 years, most probably 200 years. We construct a new high-resolution quasi-continuous archaeointensity curve of the Levant that displays two dramatic spikes in geomagnetic intensity, each corresponding to virtual axial dipole moment (VADM) in excess of 200 ZAm2. The geomagnetic spikes rise and fall over a period of less than 30 years and are associated with VADM fluctuations of at least 70 ZAm2. Thus, the Levantine archaeomagnetic record places new constraints on maximum geomagnetic intensity as well as for its rate of change. Yet, it is not clear whether the geomagnetic spikes are local non-dipolar features or a geomagnetic dipolar phenomenon.  相似文献   

3.
Ten absolute paleointensity determinations within the Brunhes chron have been obtained on andesitic lava flows from La Guadeloupe Island, French West Indies (F.W.I.). The Thellier and Thellier method performed on 124 specimens under either ambient or argon atmosphere allows reliable determinations from high temperature steps. A satisfactory within flow reproducibility has been observed and at least two samples for each flow have been used for calculation of the weighted-mean paleointensity. The average virtual axial dipole moment (VADM=7.1±1.8×1022 A m2) for normal polarity flows from the Brunhes chron recorded at La Guadeloupe is compatible with the historical field. The 10 VADM values obtained show a relatively good agreement with the deep-sea composite record (SINT800) of relative paleointensity. Focusing on the 100–75 ka interval, a 20-ka oscillation observed from a compilation of available volcanic data and present in high-resolution sedimentary records has been tentatively related to the axial dipole moment variations. Finally, a paleointensity decrease of a factor of 10 is observed for flows emitted during the Matuyama–Brunhes (M–B) transition, as already observed in other records of this reversal. Because a large area of the Globe around the Caribbean Islands was previously devoid of data, the present dataset fills a gap towards construction of a global paleointensity database for the Brunhes chron.  相似文献   

4.
The extreme scarcity of data on the behavior of the paleointensity H an in the geological past from rocks older than 400 Ma significantly hinders the development of our ideas of the geomagnetic field evolution and the geological history of the Earth as a planet. This work presents H an determinations for the Early Proterozoic using the Thellier method and meeting modern requirements for their reliability. The data are obtained from 1850-Ma rocks of granite intrusions sampled in the south of the Siberian platform. The rocks are virtually unaltered granites and granitoids. The paleointensity was determined on 15 samples; results from 11 samples were found to be suitable for the calculation of H an, which is good for experiments of this type. The common feature in the behavior of the natural remanent magnetization (NRM) is a very narrow interval of blocking temperatures: destruction of (60–90)% NRM often took place between 500 and 550°C. Because of the large thickness of the sampled magmatic body, the paleointensity estimates were corrected for its slow cooling rate. With regard for this correction, the probable value of the virtual dipole moment (VDM) from the given collection amounts to 5 × 1022 A m2. Analysis of all published data obtained by the Thellier method for the Precambrian and satisfying the well-known minimal criteria of reliability showed that the average VDM value is about 2 × 1022 A m2, which is four times smaller than the VDM value of the last million years. This phenomenon can be interpreted in terms of the hypothesis that the solid inner core formed only in Proterozoic and, in its absence, the generation of the geomagnetic field was relatively weak, which yielded a small intensity value of the geomagnetic field at early stages of the Earth’s evolution.  相似文献   

5.
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous–Paleogene boundary and the termination of paleointensity bursts after the boundary of 45–40 Ma are not marked by explicit features in the geomagnetic polarity behavior.  相似文献   

6.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

7.
Preliminary paleointensity results are presented from 36 sites with virtual geomagnetic pole (VGP) latitudes of about 30–90° normal polarity in the Quaternary West Eifel volcanic field. A strong correlation between VGP latitude and the Earth's virtual magnetic dipole moment (VDM) is observed, with low intensities for low VGP latitudes indicating possibly an emplacement during an excursion or event of the Brunhes epoch. The age distribution of the West Eifel volcanics is, as yet, poorly known. Also, the mean VDM value for sites with high VGP latitudes is considerably lower than the present day dipole moment of the Earth.  相似文献   

8.
We carried out an integrated paleomagnetic, rock-magnetic and paleointensity study of Miocene volcanic succession from the trans-Mexican volcanic belt (TMVB) north of Guadalajara. A total of 37 consecutive basaltic lava flows (326 oriented standard paleomagnetic cores) were collected at Lazo locality. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases reasonably reversible curves with Curie points close to that of pseudo-single-domain magnetite. Two geomagnetic reversals were observed in the 300 m thick composite section. Paleosecular variation was lower than the one observed in general during Miocene. It appears that the volcanic units have been emplaced during a relatively short time span of about 1 Ma. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. The mean paleomagnetic direction calculated from all data is I=31.1°, D=354.6°, k=124 and 95=2.1°, N=37. Seventy-two samples with apparently preserved primary magnetic mineralogy and without secondary magnetization, mostly belonging to reverse polarity chron were pre-selected for Thellier paleointensity determination. The flow-mean paleointensity values are ranging from 22.4±3.4 to 53.8±6.0 μT and the corresponding virtual dipole moments (VDMs) are ranging from (5.4±0.8) to (12.0±1.4)×1022 A m2. This corresponds to mean value of (7.7±2.2)×1022 A m2, which is close to present day geomagnetic field strength. Altogether, our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations.  相似文献   

9.
The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of ~2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = ?5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier–Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean–Early Proterozoic.  相似文献   

10.
Our rock magnetic analysis of core Ph05 from the West Philippine Sea demonstrates that the core preserves a strong, stable remanent magnetization and meets the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals is at the same scale. Both the conventional normalizing method and the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (χ), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis indicated that only ARM is more suitable for paleointensity reconstruction. The age model of core is established based on oxygen isotope data and AMS14C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and are correlated to the main RPI minima in the SINT-200 record, suggesting that the sediments have recorded the real changes of geomagnetic field. Supported by National Natural Science Foundation of China (Grant No. 90411014) and Pilot Project of the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-211)  相似文献   

11.
A detailed analysis of the data on the intensity of the geomagnetic dipole and frequency of its reversals presented in the world’s paleointensity databases provided the arguments in favor of the hypothesis of the negative correlation between the average virtual dipole moment (VDM) and the frequency of the reversals on the interval from 5 Ma to 100 Ma ago. However, the statistical confidence level of this hypothesis is only 60–70%, which is far below 95%, the standard required confidence level of a hypothesis to be considered statistically reliable. At a high level of confidence (above 99%), the presence of a positive correlation between the mean value and variance of VDM for a number of intervals of stable polarity in the Cenozoic and Mesozoic is confirmed. This finding means that the distribution of VDM on these time intervals is certainly non-Gaussian and is rather described by the gamma- or lognormal law. At the same time, in contrast to the earlier intervals, the histogram of VDM for the Brunhes epoch is closer to the normal distribution. Compared our conclusions with the published results on the numerical modeling of the geodynamo, we found that they are consistent in terms of a probable negative correlation between the average VDM and reversal frequency, as well as the lack of correlation between the average VDM and the length of the interval of stable polarity.  相似文献   

12.
Research into the properties of past geomagnetic fields (paleo-geomagnetism) has been carried out worldwide for over half a century. This research utilizes rocks which are to a varying degree inadequate for that purpose, and evaluation of the results is therefore not always on firm ground. One resource which can be utilized to constrain several aspects of the interpretation of other paleo-geomagnetic data, consists of stable primary remanence vectors in large homogeneous collections of dated fresh lava flows. We outline how the available remanence data from several thousand lavas in Iceland may be analysed in a semi-quantitative way to test some of current results, methodology and concepts of paleo-geomagnetism. Among topics where such analysis provides new insights, are the geomagnetic polarity time scale, the frequency distribution of virtual geomagnetic poles in latitude and longitude, and the relative intensity of the magnetic field as a function of virtual pole latitude. Comparison of the scatter in remanence intensities and in absolute paleointensity determinations on Icelandic lavas indicates, along with other evidence, that quality criteria for the latter are in need of revising. It is also confirmed here that long-term changes have occurred in the amplitude of the geomagnetic secular variation; they should be taken into account in studies on other properties of the paleo-geomagnetic field.  相似文献   

13.
Sediments from Site 769 of the Ocean Drilling Program's Leg 124 provide a record of geomagnetic intensity variation over the past 110 ky. Using continous shipboard measurements exclusively, I estimate the variation in the geomagnetic field strength by employing low-field magnetic susceptibility as a normalization parameter for the measured remanence intensity. By calibrating the resultant relative paleointensity record against previously available Holocene age estimates of absolute paleointensity, I derive an estimate of virtual dipole moment since 110 ka. The record obtained from these Sulu Sea sediments is strikingly like that previously obtained from sediments of a similar age in the Mediterranean Basin with distinct intervals of low intensity near 15, 20, 40 and 65–70 ka. The Sulu sediments also indicate a low-intensity feature near 108 ka. Important differences in paleointensity estimates obtained from these different regions for the interval between 30 and 20 ka suggest that a relatively large non-dipolar component of the geomagnetic field might have been present at that time.  相似文献   

14.
The lower part of the Roxolany section (Ukraine) is studied, and paleomagnetic and petromagnetic characteristics of rock samples are obtained for the time interval 300-75 ka. Detailed curves of variations in angular parameters of the geomagnetic field are constructed in the entire time interval, and curves of variations in the relative paleointensity are obtained for the interval 300-180 ka. Using the values of the angular parameters and the deviations of the virtual geomagnetic pole from the position of the stationary field, anomalous directions compatible with the Jamaica excursion are identified in the intervals 250-249 and 221-220 ka. The geomagnetic field evolution is studied by methods of wavelet analysis, and the field generation process is shown to vary in the interval 300-180 ka.  相似文献   

15.
The reversed paleomagnetic direction of the Laschamp and Olby flows represents a specific feature of the geomagnetic field. This is supported by paleomagnetic evidence, showing that the same anomalous direction was recorded at several distinct sites, including scoria of the Laschamp volcano. To examine this anomalous geomagnetic fluctuation, we studied the paleointensity of the Laschamp and Olby flows, using the Thellier method. Twenty-five samples were selected for the paleointensity experiments, and from seven we obtained reliable results. Because the paleointensity results of the Olby and Laschamp flows as well as Laschamp scoria are very similar, they can be represented by a single mean paleointensity,F = 7.7 μT. Considering that this low paleointensity is less than 1/6 of the present geomagnetic field and is more characteristic of transitional behavior, our results suggest that the paleomagnetic directions of the Laschamp and Olby flows were not acquired during a stable reversed polarity interval. A more likely explanation is that the Laschamp excursion represents an unsuccessful or aborted reversal.  相似文献   

16.
地磁正常场的选取与地磁异常场的计算   总被引:34,自引:8,他引:26       下载免费PDF全文
根据2003年中国地磁观测数据(包括135年地磁测点和35个地磁台)以及我国邻近地区38个IGRF计算点的地磁数据,计算中国地磁异常场的分布。选取两种地磁场模型作为地磁正常场,一是国际参考地磁场的球谐模型,二是中国地磁场泰勒多项式模型。根据各个测点的地磁异常值(观测值减去模型计算值),用球冠谐分析方法计算地磁异常场的球冠谐模型,并绘制2003年中国地磁异常(△D,△I,△F,△X,△Y,△Z)。分析和讨论了中国地磁异常场。  相似文献   

17.
The record of the Earth’s magnetic field intensity during the past (paleointensity) carries important information about the geodynamo and the state of the Earth’s interior that is not contained in the record of its paleodirection. To determine what the critical factors in obtaining reliable estimate of paleointensity are, we present new results of a paleointensity study of the 1955 and 1960 Kilauea volcano lava flows, from the Big Island of Hawaii. Rock magnetic measurements on representative hand samples from each flow in conjunction with reflected light microscopy observations show the primary carriers of remanence to be pseudo-single domain titanomagnetite with various titanium contents. Paleointensity samples (small fragments previously embedded into salt pellets) were subjected to the Thellier-Coe experimental procedure. Fourteen temperature steps were distributed over the entire temperature range used (ambient temperature to 570°C). Control heating steps (commonly referred to as partial thermo-remanent magnetization — pTRM checks) were also conducted each third double heating step. Mean field intensity value (36.6 ± 0.7 μT) retrieved from 3 reliable site mean determinations reproduces the expected value within 1.1%. With the knowledge of the rock magnetic characteristics of the samples and the strength of the geomagnetic field during cooling of the lava, our investigation suggests that the Hawaiian lavas can faithfully record the local geomagnetic field and confirms that the Thellier-Coe type techniques are suitable on historical lava flows to yield reliable absolute paleointensity determinations. The variations in direct field measurements and in lab paleofield determinations may reflect local heterogeneities of the lava or influence of very local field anomalies due to the volcanic underlying terrain. These results underscore the importance that a better understanding of intensity results of historical lava flows is still required if reliable paleointensity determinations of older periods, for which we do not know the answer, are sought.  相似文献   

18.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   


19.
Despite of the impressive cultural heritage and abundant archaeological sites, absolute geomagnetic intensity data from Mesoamerica are still sparse. Archeointensity determinations using the Coe variant of the Thellier and Thellier method have been carried out on some selected pottery fragments from the El Opeño archeological site which has the earliest funeral architecture known in western Mesoamerica. The El Opeño chronology is supported by six C14 datings performed on carbon-bearing materials. Detailed rock magnetic experiments including susceptibility vs. temperature curves, hysteresis cycles and thermal demagnetization procedures were carried out in order to estimate the magnetic carriers and their stability. Cooling rate and anisotropy remanence corrected intensity values range from 25.0 ± 2.3 to 40.2 ± 3.0 μT and corresponding virtual axial dipole moments (VADM) range from 5.6 ± 0.5 to 8.9 ± 0.7 × 1022 Am2. In addition, we present here a new compilation and analysis of existing absolute intensity data in order to try to estimate the variation of the Earth’s magnetic field over the past three millennia. The mean archeointensity obtained in the present study agrees reasonably well with the predicted absolute intensities retrieved from the CALS7K main field model. Other available Mesoamerican data, however, differ from this model. Most of available archeointensity data from Mesoamerica agree reasonably well with the ARCH3K main field model prediction. The broad peak defined at about 50 A.D. by our data is also predicted by the CALS3k.3 main field model but slightly displaced to the right while two smaller peaks are observed on the ARCH3K curve for the same time interval. The intensity value obtained at about 200 B.C. is a clear outlier and thus its geomagnetic significance should be confirmed by further investigations.  相似文献   

20.
A representative collection of Cretaceous rocks of Mongolia is used for the study of the magnetic properties of the rocks and for determination of the paleodirections and paleointensities H anc of the geomagnetic field. The characteristic NRM component in the samples is recognized in the temperature interval from 200 to 620–660°C. The values of H anc are determined by the Thellier-Coe method with observance of all present-day requirements regarding the reliability of such kind of results. Comparison of data in the literature on paleointensity in the Cretaceous superchron and in the Miocene supports the hypothesis of the inverse correlation between the average intensity of the paleofield and the frequency of geomagnetic reversals. The increase in the average intensities is accompanied by an appreciable increase in the variance of the virtual dipole moment (VDM). We suggest that the visible increase in the average VDM value in the superchron is due to the greater variability of VDM in this period compared to the Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号