首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The single and double ionization of atomic oxygen by electron impact has been studied, and the energy dependence of the specific ionization cross-section, σ(O+) and σ(O2+), has been measured from 40 to 300 eV using a high-density atomic oxygen source not contaminated by metastable O(1D) or O(1S) atoms.  相似文献   

2.
In 1979 significant concentrations of singly and multiply charged sulfur ions were observed in the Io torus. Attempts to model these observations revealed a need for new fundamental cross section data. In response, laboratory measurements of the cross-sections for single, double, triple and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV.  相似文献   

3.
A one-dimensional, time-dependent model of the neutral and ion composition of the middle atmosphere is used to study the processes controlling the production and loss of odd nitrogen species during particle ionization events. From consideration of the cross-sections for the relevant ionization and dissociation reactions we conclude that between 1.3 and 1.6 odd nitrogen atoms per ion pair are produced in the middle atmosphere. The value in the thermosphere is larger due to the role of atomic oxygen. The time-dependent mutual destruction of odd nitrogen by the reaction N(4S) +NO→ N2+O must be included and the assumption of a nitric oxide production normalized to the ionization rate is invalid. A simulation of the 1972 August solar proton event is presented. The calculated ozone depletion occurring during the event due to the increase in odd nitrogen agrees well with the measured ozone changes.  相似文献   

4.
Elastic scattering and excitation transfer collision cross-sections in O(1S)-O(3P) collisions are calculated. These cross-sections are needed in determining the degree of thermalization of the O(1S) atoms in the nighttime thermosphere. A formula is given for the rate coefficient for the production of an O(1S) atom with a specific energy in collisions involving an O(1S) atom of a given initial energy and the ground state O(3P) atoms of a thermal gas. Effective elastic scattering and excitation transfer cross-sections are defined and calculated to be 1.71 × 10?15 cm2 and 6.67 × 10?16 cm2 respectively at a relative collision energy of 0.41 eV.  相似文献   

5.
We report the first results on the determination of the ionization states of oxygen ions in the anomalous cosmic rays (ACR) from the measurements of their flux in the cosmic-ray experiment in Spacelab-3 (SL-3) mission of NASA flown at 350 km altitude during 29 April–6 May, 1985. The detectors used were specially prepared CR-39 plastics of very high sensitivity for recording tracks of ions withZ>2. The measured orbit averaged flux of ACR oxygen is (2.9±1.3)×10–4 particles m–2sr–1s–1 (MeV N–1) at an energy of 23 MeV N–1. We made an independent estimate of the expected ACR oxygen flux at SL-3 orbit from interplanetary data and compared this with the measured flux to infer the ionization states of ACR oxygen ions. The flux and energy spectra of ACR oxygen at 1 AU outside the magnetosphere is obtained from the data of Voyager-2, during the same epoch as the SL-3 flight, and using the measured radial intensity gradient of 15%/AU for ACR oxygen between 1–17 AU. We calculate the geomagnetic transmission factors for ACR oxygen ions of charge states O+1, O+2, etc., from the known cut-off rigidities in the world grid and using the SL-3 trajectories for 116 orbits in the 6-day mission to obtain the expected flux at SL-3 for different charge states. When these flux values are compared with our measured flux, the averge ionization state of ACR oxygen ions in the energy interval of 20–26 MeV N–1 is obtained as O+1.  相似文献   

6.
The fragmentation of SO2 following dissociative electron impact excitation has been studied under single collision conditions for incident electron energies up to 500 eV. The emission spectrum in the far v.u.v. spectral range (450–1100Å) shows many features arising from excited neutral oxygen and ionized oxygen and sulphur fragments. Absolute emission cross sections have been measured for the most intense lines and the maximum values were found to range from 1–12 × 10?19 cm2 with an uncertainty of approx. ± 35%. Dissociation mechanisms are discussed and in some cases the dissociation path could be uniquely identified. The striking differences between the v.u.v. emission spectrum produced by single step dissociation of SO2 and the spectra emitted by the plasma torus around Jupiter are discussed.  相似文献   

7.
High Power Large Aperture (HPLA) radars generally observe very high meteor velocities averaging over 50 km s−1. There are only a few events recorded around 30 km s−1, while meteors at 20 km s−1 or slower are very rare. This is a clear and debated contradiction to specular meteor radar results. A high plasma density condition contributes, but the dominating phenomenon is the hyperthermal ionization mechanism due to chemical dynamics of the ionization process. The observed high velocities can be explained in terms of high hyperthermal ionization cross-sections for collisions between ablated meteoroid metal atoms such as Na and/or Fe and atmospheric species.  相似文献   

8.
The potential energy curves for the electronic ground states of astrophysically important NbO, SiC, CP, PH+, SiF+, and NH+ molecules are constructed by the RKRV method. The dissociation energies are determined by curve-fitting techniques using the five-parameter Hulburt-Hirschfelder function. The estimated dissociation energies are 7.86±0.16, 3.66±0.09, 5.12±0.12, 3.08±0.09, 6.46±0.14, and 3.02±0.09 eV for NbO, SiC, CP, PH+, SiF+, and NH+, respectively. The estimatedD 0 values are in reasonably good agreement with literature values. If we utilizeD 0 values of PH+, SiF+, and NH+, ionization potentials for PH, SiF, and NH are derived. The ionization potentials are 10.12, 7.13, and 13.66 eV, respectively, for PH, SiF, and NH. Dissociation energies for the above molecules are also estimated by use of the Birge-Sponer extrapolation and Hildenbrand and Murad methods.  相似文献   

9.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   

10.
It is argued that ozone measurements made by Weeks et al. (1972) can be interpreted in terms of the enhanced ionization present. The conversion of O2+ ions to oxonium, H3O+ · (H2O)n, ions plus the dissociative recombination of these ions provides for an increased OH and/or H formation rate. The resulting enhanced OH and HO2 concentrations reduce the ambient atomic oxygen and hence ozone populations. The net excess H + OH formation rate is found to lie between one and two times the ionization production rate at altitudes where oxonium ions are the dominant positive ion species.  相似文献   

11.
We have investigated the effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM). If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5×105 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This results in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature ofT=1.5×105 K, the temperature of the ionized gas in the IGM isT g =1.2×105 K for a Hubble constantH o=75 km s–1 Mpc–1 and a hydrogen densityn H =10–6 cm–3. Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps inHi clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross-sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5×104 K, the temperature of the IGM could be lowered to about 5×104 K.  相似文献   

12.
The absolute cross-sections for the excitation of the 989 Å, 1027 Å, 7990 Å, 8446 Å, 1.1287 μm and 1.3164 μm multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O+ radiative recombination and of electron-impact excitation of the OI(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the λ 989 Å and λ. 1027 Å multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI e.u.v. emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures. It is also suggested that the λ 1027 Å radiation observed in auroral spectra is actually due to molecular nitrogen band emission that has been enhanced by entrapment effects and not to the excitation of the 2p 3P-3d 3D0 transition of atomic oxygen as believed previously.  相似文献   

13.
The processes by which energetic electrons lose energy in a weakly ionized gas of argon are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiences are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying up to 10?2.  相似文献   

14.
We have studied the escape and energization of several O+ populations and an population at Mars by using a hybrid model. The quasi-neutral hybrid model, HYB-Mars model, included five oxygen ion populations making it possible to distinguish photoions from oxygen ions originating from charge exchange processes and from the ionosphere.We have identified two high-energy ion components and one low-energy ion component of oxygen. They have different spatial and energy distributions near Mars. The two high-energy oxygen ion components, consisting of a high-energy “beam” and a high-energy “halo”, have different origins. (1) The high-energy (>∼100 eV) “beam” of O+ and ions are originating from the ionosphere. These ions form a highly asymmetric spatial distribution of escaping oxygen ions with respect to the direction of the convective electric field in the solar wind. (2) The high-energy (>∼100 eV) “halo” component contains O+ ions which are formed from the oxygen neutral exosphere by extreme ultraviolet radiation (EUV) and by charge exchange processes. These energetic halo ions can be found all around Mars. (3) The low energy O+ and ions (<∼100 eV) form a relatively symmetric spatial distribution around the Mars-Sun line. They originate from the ionosphere and from charge exchange processes between protons and exospheric oxygen atoms.The existence of the low- and the high-energy oxygen components is in agreement with recent in situ plasma measurements made by the ASPERA-3 instrument on the Mars Express mission. The analysis of the escaping oxygen ions suggests that the global energization of escaping planetary ions in the martian tail is controlled by the convective electric field.  相似文献   

15.
High resolution absorption cross-section measurements of N2O at 295–299 K have been performed in the wavelength region 170–222 nm with a 6.65 m scanning spectrometer/spectrograph of sufficient resolution to yield cross-sections that are independent of the instrumental function. The measured cross-sections are presented graphically and are available throughout the region 44925–58955 cm?1 at intervals of 0.1–0.2 cm?1 as a numerical tabulation stored on magnetic tape from the National Space Science Data Center, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A. Previously unresolved details of the banded structure which is superposed on the continuous absorption in the region 174–190 nm are observed.  相似文献   

16.
Laboratory measurements of the reaction of O2+ with NO from thermal energy to 0.6 eV in an Ar buffered flow drift tube agree with similar measurements made earlier in the same drift tube with He buffer. Since the O2+ ions are substantially vibrationally excited in Ar and not in He it follows that the reaction is not enhanced by vibrational excitation of the O2+.  相似文献   

17.
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 10?2 and the mean energy per neutral hydrogen atom pair is calculated.  相似文献   

18.
Excitation functions for collision-induced dissociation reactions of CO 3? and NO3? to give O? and the corresponding neutral species have been studied using an in-line tandem mass spectrometer. When these ions were prepared from certain gaseous mixtures, larger cross-sections and lower thresholds were observed for the dissociation processes than those found for the same ions in their apparent ground states. These observations suggest the existence of long-lived excited states of CO3?1 and NO3?1. The heats of formation of these excited ionic states were determined to be ?4.8 ± 0.1 and ?0.3 ± 0.2 eV for CO3?1 and NO3?1, respectively. Possible implications of these findings with respect to the D -region negative ion reaction scheme are discussed.  相似文献   

19.
Results of measurements of the energy distribution of thermal electrons below 1 eV in a midlatitude upper atmosphere are presented and compared with some recent measurements at other places. Measurements are based on the Druyvesteyn method using Langmuir probes.In the periods without solar light, distribution does not depart much from Maxwellian above 0.3 eV. Below 0.2 eV, depletion and sometimes double humps are seen. In the periods with solar light, bumps are sometimes observed on the high energy tail at altitudes between 100 and 160 km. Energy distribution in the F layer above 180 km fits the Maxwellian distribution rather well. The reason for the appearance of such non-thermal electrons at lower altitudes may be due to super-elastic collisions with vibrationally excited nitrogens.  相似文献   

20.
A formula is obtained for the rate coefficient for the production of a particle with a specific energy in an elastic collision with the atoms of a thermal gas. Accurate calculations are carried out of the energy transfer in elastic collisions of oxygen and hydrogen atoms. The fractions of hydrogen atoms with sufficient energy to escape from Venus produced in collisions of oxygen atoms with energies of 2.6 eV in a gas of atomic hydrogen at 100, 200 and 300 K are respectively 5.1, 6.9 and 8.5%.The mutual diffusion coefficient D of oxygen and hydrogen atoms is obtained. It can be represented by Dn = 7.25 × 1017T0.71cm?1s?1 where n is the total atom density and T is the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号