首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
On the basis of observations in the dayside magnetosphere of the O+ and H+ ion densities as function of radial distance under fairly undisturbed and under storm conditions it is argued that acceleration of the hot magnetospheric ions of ionospheric origin cannot be limited to the outer parts of the field tubes. The extraction process seems to work below 1000 km altitude in storm conditions and to have a fairly small extension in altitude. The acceleration mechanism(s) do(es) not affect only one ion species. Variation in the altitude of the extraction of ionospheric ions is the most likely reason for the observed variations in the n(O+)/n(H+) ratio. Extraction of ionospheric ions into the magnetosphere does not seem to be a main cause of the storm time density decrease of the ionosphere.  相似文献   

2.
The coupled time-dependent O+ and H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed.The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2–3 days. During the day the ion content of the magnetic flux tube consists mainly of O+ whereas O+ and H+ are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H+ flowing downward and O+ flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H+ at the higher altitudes. This H+ diffuses both upwards and downwards whilst O+ diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated O+ and H+ temperatures are very nearly equal whereas during the day there are occasions when the H+ temperature exceeds the O+ temperature by about 300 K.  相似文献   

3.
Topside ionospheric profiles are used to study the upward field-aligned flow of thermal O+ at high latitudes. On the majority of the field lines outside the plasmasphere, the mean flux is approximately equal to the mean polar wind measured by spacecraft at greater altitudes. This is consistent with the theory of thermal light ion escape supported, via charge exchange, by upward O+ flow at lower heights. Events of larger O+ flow are detected at auroral latitudes and their occurrence is found to agree with that of transversely accelerated ions within the topside ionosphere and the magnetosphere. The effects of low altitude heating of O+ by oxygen cyclotron waves, driven by downward field-aligned currents, are considered as a possible common cause of these two types of event.  相似文献   

4.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

5.
The problem of the propagation of an electromagnetic wave originating for instance in a lightning flash through the ionospheric medium is analysed in order to understand the formation at high ionospheric altitudes of the so-called proton whistler. It is shown that the accessibility of the hydrodynamic (or kinetic) proton resonance at the satellite altitude requires that a mode conversion process must take place slightly above the transition region separating the one ion (O+) from the two ion (O+ + H+) component plasmas. Moreover, the transformation conditions in the wave conversion region imply that the magnetic field should be (almost) perpendicular to the density gradient. Otherwise, the incident electromagnetic wave will never reach the satellite altitude in the frequency range of the proton whistler. However, some former proton whistler theories have postulated that the signal is the result of simple ionospheric propagation effects, in contradiction with the above results. These former proton whistler theories are reviewed and it is shown that the basic flaw in these theories lies in that the incident electromagnetic wave has been supposed from the beginning to have reached the high ionospheric altitudes where is located the satellite without being influenced by the lower ionospheric layers. Some various aspects, like the high variability of the wave electric to magnetic field ratio and the harmonics bands as observed by Injun are analysed in the light of the obtained results. Finally, numerical solutions of the wave dispersion relation for both the fast hydrodynamic mode (the extraordinary mode) and the slow ion kinetic mode are presented which shows that a coupling process between the two modes may take place at various frequencies between the O+ and the H+ gyrofrequencies.  相似文献   

6.
The thermal response of the Earth's ionospheric plasma is calculated for various suddenly applied electron and ion heat sources. The time-dependent coupled electron and ion energy equations are solved by a semi-automatic computational scheme that employs Newton's method for coupled vector systems of non-linear parabolic (second order) partial differential equations in one spatial dimension. First, the electron and composite ion energy equations along a geomagnetic field line are solved with respect to a variety of ionospheric heat sources that include: thermal conduction in the daytime ionosphere; heating by electric fields acting perpendicular to the geomagnetic field line; and heating within a stable auroral red are (SAR-arc). The energy equations are then extended to resolve differential temperature profiles, first for two separate ion species (H+, O+) and then for four separate ion species (H+, He+, N+, O+) in addition to the electron temperature. The electron and individual ion temperatures are calculated for conditions within a night-time SAR-arc excited by heat flowing from the magnetosphere into the ionosphere, and also for typical midlatitude daytime ionospheric conditions. It is shown that in the lower ionosphere all ion species have the same temperature; however, in the topside ionosphere above about 400 km, ion species can display differential temperatures depending upon the balance between thermal conduction, heating by collision with electrons, cooling by collisions with the neutrals, and energy transfer by inter-ion collisions. Both the time evolution and steady-state distribution of such ion temperature differentials are discussed.The results show that below 300km both the electrons and ions respond rapidly (<30s) to variations in direct thermal forcing. Above 600 km the electrons and ions display quite different times to reach steady state, depending on the electron density: when the electron density is low the electrons reach steady state temperatures in 30 s, but typically require 700 s when the density is high; the ions, on the other hand, reach steady state in 700 s when the density is high, and 1500–2500 s when the density is low. Between 300 and 600 km, a variety of thermal structures can exist, depending upon the electron density and the type of thermal forcing; however steady state is generally reached in 200–1000 s.  相似文献   

7.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   

8.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

9.
Using particle aspect approach, the effect of multi-ions densities on the dispersion relation, growth rate, perpendicular resonant energy and growth length of electromagnetic ion cyclotron wave with general loss-cone distribution function in hot anisotropic multi-ion plasma is presented for auroral acceleration region. It is observed that higher He+ and O+ ions densities enhance the wave frequency closer to the H+ ion cyclotron frequency and growth rate of the wave. The differential heating of He+ ions perpendicular to the magnetic field is enhanced at higher densities of He+ ions. The waves require longer distances to achieve observable amplitude by wave-particle interactions mechanism as predicted by growth length. It is also found that electron thermal anisotropy of the background plasma enhances the growth rate and reduces the growth length of multi-ions plasma. These results are determined for auroral acceleration region.  相似文献   

10.
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of ~5.2 Re traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2.0–5.4. The locations of the Explorer 45 plasmapause crossings (determined by the saturation of the d.c. electric field double probe) during this month were compared to the latitudinal decreases of the H+ density observed on ISIS 2 (by the magnetic ion mass spectrometer) near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Hence, the abruptly decreasing H+ density on the low latitude side of the ionospheric trough is not a near earth signature of the equatorial plasmapause. Vertical flows of the H+ ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 km s?1 near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H+ trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause. The existence of upward accelerated H+ flows to possibly supersonic speeds during the refilling of magnetic flux tubes in the outer plasmasphere could produce an equatorial plasmapause whose field lines map into the ionosphere at latitudes which are poleward of the H+ density decrease.  相似文献   

11.
A Monte Carlo simulation is used to study the effects of Kappa H+distributions in the polar wind. We consider the gravity, the polarization electric field, the divergence of geomagnetic field lines and Coulomb collisions of H+ in a background of O+ ions. The aim is to study the consequences of a velocity distribution function with an enhanced high energy tail instead of a Maxwellian distribution as assumed in earlier Monte Carlo simulations. The transformation of the velocity distribution function of H+ ions as a function of the altitude is presented. Effects resulting from the acceleration of the particles by the polarization electric field and from Coulomb collisions depend on the energy of the particles. Coulomb collisions mainly affect low energy particles while high energy particles are more efficiently accelerated by the upward directed ambipolar electric field. The combination of both effects results in double-hump velocity distribution functions developing in the transition region. We study consequences of suprathermal tails distributions on the shape of the double-hump and on the moments of the velocity distribution function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
An empirical model of atomic ion densities (H+, He+, N+, O+) is presented up to 4000 km altitude as a function of time (diurnal, annual), space (position, altitude) and solar flux (F10.7) — using observations of satellites (AE-B, AE-C, AE-D, AE-E, ISIS-2, OGO-6) and rockets during quiet geophysical conditions (K p 3). The numerical treatment is based upon harmonic functions for the horizontal pattern and cubic splines for the vertical structure.The ion densities increase with increasing height up to a maximum (depending roughly on the ion mass) and decrease beyond that with increasing altitude. Above 200 km, O+ is the main ionic constituent being replaced at approximately 800 km (depending on latitude, local time, etc.) by H+. Around polar regions the light ions, H+ and He+, are depleted (polar wind) and the heavier ones enhanced. During local summer conditions the ion densities increase around polar latitudes and correspondingly decrease during local winter, except He+ which reflects the opposite pattern. Diurnal variations are intrinsically coupled to the individual plasma layers: N+ and O+ peak, in general, during daytime, while the amplitudes and phases of H+ and He+ change strongly with altitude and latitude. Earth, Moon and Planets Review article.  相似文献   

13.
W.J. Borucki  R.C. Whitten  E. Barth 《Icarus》2006,181(2):527-544
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes between 0 and 400 km. Ionization of methane and nitrogen due to galactic cosmic rays (GCR) is important at night where these ions are converted to ion clusters such as CH+5CH4, C7H+7, C4H+7, and H4C7N+. The ubiquitous aerosols observed also play an important role in determining the charge distribution in the atmosphere. Because polycyclic aromatic hydrocarbons (PAHs) are expected in Titan's atmosphere and have been observed in the laboratory and found to be electrophilic, we consider the formation of negative ions. During the night, the very smallest molecular complexes accept free electrons to form negative ions. This results in a large reduction of the electron abundance both in the region between 150 and 350 km over that predicted when such aerosols are not considered. During the day time, ionization by photoemission from aerosols irradiated by solar ultraviolet (UV) radiation overwhelms the GCR-produced ionization. The presence of hydrocarbon and nitrile minor constituents substantially reduces the UV flux in the wavelength band from the cutoff of CH4 at 155 to 200 nm. These aerosols have such a low ionization potential that the bulk of the solar radiation at longer wavelengths is energetic enough to produce a photoionization rate sufficient to create an ionosphere even without galactic cosmic ray (GCR) bombardment. At altitudes below 60 km, the electron and positive ion abundances are influenced by the three-body recombination of ions and electrons. The addition of this reaction significantly reduces the predicted electron abundance over that previously predicted. Our calculations for the dayside show that the peaks of the charge distributions move to larger values as the altitude increases. This variation is the result of the increased UV flux present at the highest altitudes. Clearly, the situation is quite different than that for the night where the peak of the distribution for a particular size is nearly constant with altitude when negative ions are not present. The presence of very small aerosol particles (embryos) may cause the peak of the distribution to decrease from about 8 negative charges to as little as one negative charge or even zero charge. This dependence on altitude will require models of the aerosol formation to change their algorithms to better represent the effect of charged aerosols as a function of altitude. In particular, the charge state will be much higher than previously predicted and it will not be constant with altitude during the day time. Charging of aerosol particles, whether on the dayside or nightside, has a major influence on both the electron abundance and electrical conductivity. The predicted conductivities are within the measurement range of the HASI PWA instrument over most but not all, of the altitude range sampled.  相似文献   

14.
A mathematical model has been developed to calculate consistent values for the O+ and H+ concentrations and field-aligned velocities and for the O+, H+ and electron temperatures in the night-time equatorial topside ionosphere. Using the results of the model calculations a study is made to establish the ability of F-region neutral air winds to produce observed ion temperature distributions and to investigate the characteristics of ion temperature troughs as functions of altitude, latitude and ionospheric composition. Solar activity conditions that give exospheric neutral gas temperatures 600 K, 800 K and 1000 K are considered.It is shown that the O+-H+ transition height represents an altitude limit above which ion cooling due to adiabatic expansion of the plasma is extremely small. The neutral atmosphere imposes a lower altitude limit since the neutral atmosphere quenches any ion cooling which field-aligned transport tends to produce. The northern and southern edges of the ion temperature troughs are shown to be restricted to a range of dip latitudes, the limiting dip latitudes being determined by the magnetic field line geometry and by the functional form of the F-region neutral air wind velocity. Both these parameters considerably influence the interaction between the neutral air and the plasma within magnetic flux tubes.  相似文献   

15.
Jane L. Fox 《Icarus》2011,216(2):625-639
We have modeled the near and post-terminator thermosphere/ionosphere of Venus with a view toward understanding the relative importance of EUV solar fluxes and downward fluxes of atomic ions transported from the dayside in producing the mean ionosphere. We have constructed one-dimensional thermosphere/ionosphere models for high solar activity for seven solar zenith angles (SZAs) in the dusk sector: 90°, 95°, 100°, 105°, 110°, 115° and 125°. For the first 4 SZAs, we determine the optical depths for solar fluxes from 3 Å to 1900 Å by integrating the neutral densities numerically along the slant path through the atmosphere. For SZAs of 90°, 95°, and 100°, we first model the ionospheres produced by absorption of the solar fluxes alone; for 95°, 100°, and 105° SZAs, we then model the ion density profiles that result from both the solar source and from imposing downward fluxes of atomic ions, including O+, Ar+, C+, N+, H+, and He+, at the top of the ionospheric model in the ratios determined for the upward fluxes in a previous study of the morphology of the dayside (60° SZA) Venus ionosphere. For SZAs of 110°, 115° and 125°, which are characterized by shadow heights above about 300 km, the models include only downward fluxes of ions. The magnitudes of the downward ion fluxes are constrained by the requirement that the model O+ peak density be equal to the average O+ peak density for each SZA bin as measured by the Pioneer Venus Orbiter Ion Mass Spectrometer. We find that the 90° and 95° SZA model ionospheres are robust for the solar source alone, but the O+ peak density in the “solar-only” 95° SZA model is somewhat smaller than the average value indicated by the data. A small downward flux of ions is therefore required to reproduce the measured average peak density of O+. We find that, on the nightside, the major ion density peaks do not occur at the altitudes of peak production, and diffusion plays a substantial role in determining the ion density profiles. The average downward atomic ion flux for the SZA range of 90–125° is determined to be about 1.2 × 108 cm−2 s−1.  相似文献   

16.
A model of the predawn bulge ionosphere composition and structure is constructed and compared with the ion mass spectrometer measurements from the Pioneer Venus Orbiter during orbits 117 and 120. Particular emphasis is given to the identification of the mass-2 ion which we find unequivocally due to D+ (and not H2+). The atmospheric D/H ratio of 1.4% and 2.5% is obtained at the homopause (~ 130 km) for the two orbits. The H2+ contribution to the mass-2 ion density is less than 10%, and the H2 mixing ratio must be <0.1 ppm at 130 km altitude. The He+ data require a downward He+ flux of ~2 × 107 cm?2 sec?1 in the predawn region which suggest that the light ions also flow across the terminator from day to night along with the observed O+ ion flow.  相似文献   

17.
A study has been undertaken of the vertical fluxes of ionization in the F2 region over Millstone Hill (L = 3.2) utilizing incoherent scatter measurements of electron density, electron and ion temperatures, ion composition and vertical velocity, made over 24-hr periods twice per month during 1969. The paper presents the results for all these parameters on five representative days, and discusses the distribution of the vertical flux observed during the daytime at other times during the year.Near noon the downward flux reached a peak near 300 km with an average value of ~3 × 109 el/cm2/sec in winter and ~1.6 × 109 el/cm2/sec in summer. The difference is thought to be real and be caused by the higher loss rates prevailing in summer. Above 550 km there is usually a transition to upward flux, which appears to be fully established by 700 km and has an average value of the order of 5 × 107 l/cm2/sec. From ion composition measurements, it appears that this flux is carried almost entirely by O+ ions to at least ~900 km, as the H+ ion concentration is small (<2% at ~775 km altitude) in this region by day. While the value of the escape flux appears in fair agreement with theoretical estimates of the limiting flux for this portion of the sunspot cycle, the extremely low H+ concentrations do not appear to be in accord with existing models.The diurnal variation of the upward flux through 650 km exhibits an abrupt onset close to the time of sunrise at the 200 km level (χ = 103°). A reversal to downward flux usually begins before sunset, often in the early afternoon.  相似文献   

18.
Extensive calculations have been made of the behaviour of He+ for situations where ion outflow occurs from the topside ionosphere. For these circumstances, steady state solutions for the He+ continuity, momentum and energy equations have been obtained self-consistently, yielding density, velocity and temperature profiles of He+ from 200 to 2000 km altitude. To model the high latitude topside ionosphere, a range of background H+O+ ionospheres was considered with variations in the H+ outflow velocity, the presence of a perpendicular electric field and different peak O+ densities. In addition, the atmospheric density of neutral helium was chosen to model typical observed winter and summer densities. From our studies we have found that: (a) The outflowing He+ has density profiles of similar shape to those of H+, for basically different reasons; (b) The effect of the perpendicular electric field differs considerably for H+ and He+. This difference stems from the fact that an electric field acts to alter significantly the O+ density at high altitudes and this, in turn, changes the H+ escape flux through the O++H charge exchange reaction. A similar situation does not occur for He+ and therefore the He+ escape flux exhibits a negligibly small change with electric field; (c) The fractional heating of He+ due to the He+O+ relative flow is not as effective in heating He+ as the H+O+ relative flow is in heating H+; (d) During magnetospheric disturbances when the N2 density at the altitude of the He+ peak (600 km) can increase by a factor as large as 50, the He+ peak density decreases only by approximately a factor of 2; and (e) The He+ escape flux over the winter pole is approximately a factor of 20 greater than the He+ escape flux over the summer pole. Consequently, on high latitude closed field lines there could be an interhemispheric He+ flux from winter to summer.  相似文献   

19.
The high electron temperatures existing within SAR-arcs can result in enhanced vibrational excitation of atmospheric N2 molecules and, as a consequence, increase the rate coefficient of the reaction, O+ + N2 → NO+ + N. This results in a change in the relative abundance of O+ and NO++ in the SAR-arc region compared with that in the undisturbed ionosphere. Theoretical ion density profiles were computed by a triple ion analysis solving the mass, momentum and energy equations for O+, NO+ and O+2 ions self-consistently. Although the electron temperature dependence of the recombination rate of NO+ is not well known, the results show that for a range of expected recombination rates NO+ still remains the dominant ion up to ca. 320 km at night within a bright SAR-arc. Studies were also made of the relative importance of a downward O+ flux and an upward ion drift in maintaining the F-region under SAR-arc conditions. It was found that the upward drift caused a marked increase in the NO+/O+ transition altitude as high as 460 km at night. However, for typical drift speeds up to 50 m sec?1 the peak electron density was lower than experimental observations. The effect of a large, short-duration perpendicular electric field on the SAR-arc ion and electron density profiles was found to be small. In all cases considered the magnitude of the enhanced NO+ density as a result of vibrationally excited N2 molecules was sufficient to prevent the electron density within the night-time SAR-arc from becoming vanishingly small.  相似文献   

20.
On 14 December 1971, during the maximum of the Geminid Meteor Shower, the positive ion composition was measured in the D- and E-regions above Sardinia. The payload was launched at 12:11 UT, and measurements were made between 68.5 and 152 km altitude. A magnetic sector type mass spectrometer with dual collector and a liquid helium cryopump was used. The instrument covered the mass range from 11 to 73 AMU and had a resolution at the 1 % level of MM = 60.In the E-region two distinct metal ion layers were observed, centred at 95 and 119 km, respectively. In the lower layer Fe+ and Mg+ were the most abundant metal ions, and in the upper layer Si+ was dominant. Si+ ions were conspicuously absent in the lower layer (Si+/Mg+ < 2 × 10−3). This particular behaviour of Si could be due to the inability of atomic oxygen to reduce SiO, whereas in the upper layer Si+ions might be formed directly by the charge rearrangement reaction SiO + O+ → Si++ O2. In addition, Na+, Al+, K+, Ca+, Ti+, Cr+, Ni+ and Co+ were also identified. The metal oxide ions AlO+ and SiO+ were detected, and probably also MgO+ and SiOH+. The concentrations of NO+ and O2+ show a deep minimum at the maximum of the lower metal ion layer. A very high neutral metal density of 6 × 107 cm−3 would be required to explain this feature as resulting from charge transfer reactions between the molecular and metal ions Such a high metal density is in contradiction to direct measurements and to cosmic dust influx rates. The isotopic ratios of Mg+, Si+, and of the major isotopes of Fe+ and Ni+ were measured, some of them with an accuracy of a few per cent (25Mg+/24Mg+ = 0.124 ± 0.006; 26Mg+/24Mg+ = 0.139 ± 0.008; 29Si+/28Si+ = 0.050 ± 0.004; 54Fe+/56Fe+ = 0.069 ± 0.005; 57Fe+/56Fe+ = 0.029 ± 0.004; 60Ni+/58Ni+ = 0.31 ± 0.12). The isotopic ratios agree within the experimental errors with the corresponding terrestrial ratios, thus giving evidence that these elements have the same isotopic composition in the Geminid meteors as in the Earth's crust, in chrondrites, and in lunar material.In the D-region the ions Na+H2O, Na+(H2O)2, NaO+ and NaOH+ were tentatively identified. Below 95 km altitude the relative abundances of the ions 32+, 33+ and 34+ deviate from the values expected for molecular oxygen isotopes. Their abundances can not be explained by the presence of S-ions only, and we conclude that HO2+ and H2O2+ are present.The ion density profiles of the major D-region constituents show some remarkable deviations from typical D-region conditions. These deviations are related to the winter anomaly in ionospheric absorption observed over Spain during the launch day, and our data represent the first ion composition measurements during such conditions. In particular, H+(H2O)2 is the major ion only up to 77 km, and at 80 km altitude the NO+ concentration exceeds the total water cluster ion density by almost two orders of magnitude. An increase of the mesospheric NO, O3 and O concentrations as well as of the O/H2O ratio could explain the observed ion profiles. The low NO+/O2+ ratios of approximately unity measured in the E-region are in agreement with a strong downward transport of NO and/or O into the mesosphere during the launch day. A simple four-ion model was used to interpret our D-region data. The calculated neutral NO concentration increases from about 2 × 107 cm−3 at 85 km to 5 × 107 cm−3 at 80 km. In addition, evidence for an increased O2+ production rate above 83 km was found, probably due to an enhanced O3 concentration. We conclude that our data strongly support vertical transport of minor neutral consituents as cause of the winter anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号