首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution of the equation of radiative transfer in a medium exhibiting Rayleigh scattering, as developed by S. Chandrasekhar, has been used for an extensive series of computations(3) of the characteristics of the scattered and diffusely reflected radiation emerging from the top of an atmospheric model which corresponds in many respects to the sunlit portion of the earth's atmosphere. The first part of this two-part discussion dealt with the intensity, degree of polarization, plane of polarization and the neutral points of the emergent light as functions of sun elevation, direction in the downward hemisphere, optical thickness of the model atmosphere and reflectivity of the underlying surface. This second part is concerned with the upward flux obtained by an integration of the intensity over the entire hemisphere, for the incident radiation (a) being independent of wavelength or (b) having the spectral distribution of the extra-terrestrial solar radiation. Integration with respect to wavelength in the latter case, together with an approximation for the sphericity of the atmosphere, yields a value of 7.6 per cent for the earth's planetary albedo due to scattering by the clear atmosphere. An approximation for ozone absorption decreases the computed albedo to 6.9 per cent.  相似文献   

2.
We present Monte Carlo simulations for the polarization of light reflected from planetary atmospheres. We investigate dependencies of intensity and polarization on three main parameters: single scattering albedo, optical depth of a scattering layer, and albedo of a Lambert surface underneath. The main scattering process considered is Rayleigh scattering, but isotropic scattering and enhanced forward scattering on haze particles are also investigated. We discuss disk integrated results for all phase angles and radial profiles of the limb polarization at opposition. These results are useful to interpret available limb polarization measurements of solar system planets and to predict the polarization of extra-solar planets as a preparation for VLT/SPHERE. Most favorable for a detection are planets with an optically thick Rayleigh-scattering layer. The limb polarization of Uranus and Neptune is especially sensitive to the vertically stratified methane mixing ratio. From limb polarization measurements constraints on the polarization at large phase angles can be set.  相似文献   

3.
The problem of diffuse reflection and transmission of solar radiation through a planetary atmosphere bounded from below by a reflecting surface is solved. The solution method based on rewriting the solution of the proposed problem in terms of the well known standard problem solution, where the planetary surface does not reflect. The solution of the standard problem can be found elsewhere or as we did by using the maximum entropy method. Numerical results for the angular radiation intensity and for the reflection and transmission coefficients are presented and compared with those obtained by Chandrasekhar's method.  相似文献   

4.
S. Chandrasekhar's solution of the equation of radiative transfer m a medium scattering according to Rayleigh's law has been used for an extensive series of computations of the scattered and diffusely reflected radiation directed outward from the top of a plane stratified model of the atmosphere. The results are discussed in two parts, the first of which deals with the intensity, degree of polarization, plane of polarization and the neutral points of the scattered and diffusely reflected radiation. Part II (see following article) will be a discussion of the upward flux, integrated over the hemisphere, as a function of wavelength of the incident radiation, and of the albedo of the atmospheric model for an energy distribution of the incident light similar to that of the extra-terrestrial solar spectrum. The results are compared with similar quantities for the diffusely scattered radiation from the sunlit sky.  相似文献   

5.
An approximate solution has been obtained for the problem of multiple scattering of light in an optically thin, inhomogeneous spherically symmetric planetary atmosphere illuminated by parallel solar radiation. A three-stream division of the radiation field has been made and a generalized Eddington approximation developed to solve the moment equations of the problem.  相似文献   

6.
This series of papers is devoted to multiple scattering of light in plane parallel, inhomogeneous atmospheres. The approach proposed here is based on Ambartsumyan's method of adding layers. The main purpose is to show that one can avoid difficulties with solving various boundary value problems in the theory of radiative transfer, including some standard problems, by reducing them to initial value problems. In this paper the simplest one dimensional problem of diffuse reflection and transmission of radiation in inhomogeneous atmospheres with finite optical thicknesses is considered as an example. This approach essentially involves first determining the reflection and transmission coefficients of the atmosphere, which, as is known, are a solution of the Cauchy problem for a system of nonlinear differential equations. In particular, it is shown that this system can be replaced with a system of linear equations by introducing auxiliary functions P and S. After the reflectivity and transmissivity of the atmosphere are determined, the radiation field in it is found directly without solving any new equations. We note that this approach can be used to obtain the required intensities simultaneously for a family of atmospheres with different optical thicknesses. Two special cases of the functional dependence of the scattering coefficient on the optical thickness, for which the solutions of the corresponding equations can be expressed in terms of elementary functions, are examined in detail. Some numerical calculations are presented and interpreted physically to illustrate specific features of radiative transport in inhomogeneous atmospheres.  相似文献   

7.
The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.  相似文献   

8.
In order to facilitate the computations of the intensities of radiation reflected and/or transmitted by plane-parallel, vertically inhomogenous, scattering-absorbing media, we carry out the optical thickness integrations of the Cauchy systems (normally referred to as Invariant Imbedding Equations) for reflection and transmission functions originating from the first three orders of scattering: the medium in question is represented by a stack of a certain number of homogeneous slabs, each of which is characterized by a constant single scattering albedo and a constant phase function together with the optical thickness.The results are a set of recurrence formulae involving only the angular intergrations, a convenient feature for numerical computations, and should prove useful particularly for finding approximate values of the high frequency Fourier coefficients of reflection and transmission functions of inhomogeneous media or efficiently initializing the solution for a thin layer to perform rigorous multiple scattering computations by means of other techniques such as the Doubling-Adding method.  相似文献   

9.
In this paper we develop a new exact method combined with finite Laplace transform and theory of linear singular operators to obtain a solution of transport equation in finite plane-parallel steady-state scattering atmosphere both for angular distribution of radiation from the bounding faces of the atmosphere and for intensity of radiation at any depth of the atmosphere. The emergent intensity of radiation from the bounding faces are determined from simultaneous linear integral equations of the emergent intensity of radiation in terms ofX andY equations of Chandrasekhar. The intensity of radiation at any optical depth for a positive and negative direction parameter is derived by inversion of the Laplace transform in terms of intergrals of the emergent intensity of radiation. A new expression of theX andY equation is also derived for easy numerical computation. This is a new and exact method applicable to all problems in finite plane parallel steady scattering atmosphere.  相似文献   

10.
For the evaluation of the effect of the nonuniform surface albedo to the emergent radiation from the atmosphere, the emergent radiation from the atmosphere bounded by the two-halves of the Lambert surface with different albedos is computed. The principal plane is assumed to be perpendicular to the boundary of surfaces. The atmosphere is assumed to be homogeneous, which is composed of aerosol, molecules, and absorbent gases. Their optical thicknesses are 0.25, 0.23, and 0.02, respectively. The model aerosol is of the oceanic and water soluble types.In the computational procedure, the emergent radiation is approximated by the contributions due to the multiple scattering in the atmosphere, directly attenuated radiation, and radiation due to single scattering in the atmosphere which is reflected by the Lambert surface (up to 4 interactive radiative modes between atmosphere and surface). For quantitative analysis, results are compared with those of the atmosphere-uniform surface model, where the multiple scattering is considered. The numerical simulation exhibits the extraordinary effect near the surface boundary of different albedos. The effect decreases exponentially with the distance from the boundary. It is a function of the observational position, difference of surface albedos, optical thickness and aerosol type.The upward radiance would simply be evaluated using the present scattering approximation method if the atmosphere is in clear condition. Whereas in hazy condition, the effect of multiple scattering in the atmosphere should be considered more precisely, since the upward radiance exhibit a strong dependence on observational nadir angles due to multiple scattering in the atmosphere. Furthermore, it depends on the optical characteristics of aerosols.  相似文献   

11.
We have considered the transport equation for radiative transfer to a problem in semi-infinite non-conservative atmosphere with no incident radiation and scattering albedo 0 < 1. Usint the Laplace transform and the Wiener-Hopf technique, we have determined the emergent intensity and the intensity at any optical depth. We have obtained theH-function of Dasgupta (1977) by equating the emergent intensity with the intensity at zero optical depth.  相似文献   

12.
The vector equation of radiative transfer is solved both for conservative and non-conservative planetary atmospheres using the method of discrete ordinates. The atmosphere, bounded by a Lambert bottom, is considered plane-parallel and homogeneous. The scattering in the atmosphere obeys the Rayleigh or Rayleigh-Cabannes law. The compiled package of FORTRAN codes allows us to find the Stokes parameters for such an atmosphere at arbitrary optical depth.  相似文献   

13.
We have considered the transport equation for radiative transfer to a problem in semi-infinite atmosphere with no incident radiation and scattering according to planetary phase function w(1 + xcos ). Using Laplace transform and the Wiener-Hopf technique, we have determined the emergent intensity and the intensity at any optical depth. The emergent intensity is in agreement with that of Chandrasekhar (1960).  相似文献   

14.
《Planetary and Space Science》2007,55(10):1283-1289
The problem of monoenergetic polarized radiation transfer in a plane-parallel finite atmospheric medium is proposed. Pomraning–Eddington approximation is used to obtain the analytical solution for both the total intensity and the difference function of the polarized radiation. The medium is assumed to have specular reflecting boundaries with angular-dependent externally incident flux. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the reflectivity and transmissivity are obtained for the different degrees of polarization.  相似文献   

15.
A new method of determining the amplitudes of scattering of a plane electromagnetic wave incident at an angle a onto an arbitrary, isotropic, one-dimensionally inhomogeneous medium of finite thickness is developed. It is shown that this problem reduces to a Cauchy problem for a system of two first-order, linear differential equations. Translated from Astrofizika, Vol. 43, No. 2, pp. 269-276, April–June, 2000.  相似文献   

16.
During the descent of the Huygens probe through Titan's atmosphere in January 2005, the Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking measurements at various spectral ranges and spatial resolutions. This internal radiation density could be estimated by radiative transfer calculations for Titan's atmosphere. However, to do this, the optical properties—i.e. volume extinction coefficient, single scattering albedo and scattering phase function—have to be prescribed at every altitude, and these are apriori not known. Herein, an inverse approach is investigated, which retrieves the single scattering albedo and the phase function of the aerosols from DISR observations. The method uses data from a DISR subinstrument, the Solar Aureole imager (SA), to estimate the optical properties of the atmospheric layer between two successive observation altitudes. A unique solution for one layer can in principle be calculated directly from a linear system of equations, but due to the sparseness of the data and the unavoidable noise in the measurements, the inverse problem is ill-posed. The problem is stabilized by the regularization method requiring smoothness of the resultant solution. A consistent set of solutions for all layers is obtained by iterating several times downward and upward through the layers. The method is tested in a simulated radiation density scenario for Titan, which is based on a microphysical aerosol model for the haze layer. Within this scenario, the expected coverage of SA data allows a reconstruction of the angular dependence of the scattering phase function with an explained variance better than 90%.  相似文献   

17.
The determination of the average path-length of photons in a finite isotropically scattering plane-parallel homogeneous atmosphere is discussed. To solve this problem we have used the kernel approximation method which easily allows us to find the derivatives of the intensity with respect to optical depth, optical thickness and albedo of single scattering.In order to check the results we have used another approach by exploiting the set of integrodifferential equations of Chandrasekhar for theX- andY-functions. This approach allows us to find the average path length only at the boundaries of the atmosphere but on the other hand it gives also the dispersion of the path-length distribution function, thus generating the input parameters for determining the approximate path-length distribution function. It occurred that the set so obtained is stable and the results are highly accurate.As a by-product we obtain the first two derivatives of theX- andY-functions with respect to the albedo of single scattering and optical thickness, and the mixed derivative.  相似文献   

18.
19.
We investigate the multiple scattering of radiation in semi-infinite homogeneous atmosphere when the sources of the radiation are distributed inhomogeneous, for example, are created by restricted beams penetrating into the medium. The case of isotropic scattering is considered. It is shown that the density of radiation and the intensity of outgoing radiation for any forms of the sources can be represented as some integrals with the real and imaginary parts of the universal H-function, which satisfies the nonlinear integral equation. We calculated the intensity of radiation emerging from the surface after multiple scattering for the case when a beam with a finite radius incident perpendicular on the medium surface. The results allowed us to estimate quantitatively when the intensity of outgoing radiation in the center of a beam coincides with that for the classical case of unbounded flux (the case considered by Chandrasekhar et al.). We compared our exact solutions with those in the diffusion approximation. For conservative medium the difference is ?20–30%, depending on the particular forms of the radiation sources. For absorbing medium the difference is much larger. Our exact semi-analytical solution can be generalized for the cases of multiple anisotropic scattering of the polarized beams. The presented simple theory can be used at the consideration of close binary systems, flare stars etc.  相似文献   

20.
To facilitate the computation of the radiative intensity reflected, upon multiple scattering, by a vertically inhomogeneous medium, an implicit formula for integrating the invariant imbedding equation for Fourier-decomposed reflection function is derived starting with the formal solution: the height variations of the single-scattering albedo and the phase function characterizing the degree of inhomogeneity are thereby approximated by piece-wise, but continuous, linear functions of optical height , while the reflection function is approximated by a piece-wise quadratic polynomial in over each integration step. Using these approximations, the integration involved in the formal solution is then carried out analytically, yielding a correctortype formula for finding the reflection function at each step of . It is expected that this formula is capable of handling general cases of inhomogeneous media where both single-scattering albedo and phase function are allowed to vary continuously with height.Similar, but explicit expressions are also derived for the single and the second-order scattering solutions, with which the higher-order Fourier terms of reflection function are to be approximated, thereby enabling us to avoid the iterative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号