首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   

2.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

3.
Garnet amphibolites can provide valuable insights into geological processes of orogenic belts, but their metamorphic evolution is still poorly constrained. Garnet amphibolites from the Wutai–Hengshan area of the North China Craton mainly consist of garnet, hornblende, plagioclase, quartz, rutile and ilmenite, with or without titanite and epidote. Four samples selected in a south–north profile were studied by the pseudosection approach in order to elucidate the characteristics of their metamorphic evolution, and to better reveal the northwards prograde change in P–T conditions as established previously. For the sample from the lower Wutai Subgroup, garnet exhibits obvious two‐substage growth zoning characteristic of pyrope (Xpy) increasing but grossular (Xgr) decreasing outwards in the core, and both Xpy and Xgr increasing outwards in the rim. Phase modelling using thermocalc suggests that the garnet cores were formed by chlorite breakdown over 7–9 kbar at 530–600 °C, and rims grew from hornblende and epidote breakdown over 9.5–11.5 kbar at 600–670 °C. The isopleths of the minimum An in plagioclase and maximum Xpy in garnet were used to constrain the peak P–T conditions of ~11.5 kbar/670 °C. The modelled peak assemblage garnet + hornblende + epidote+ plagioclase + rutile + quartz matches well the observed one. Plagioclase–hornblende coronae around garnet indicate post‐peak decompression and fluid ingress. For the samples from the south Hengshan Complex, the garnet zoning weaken gradually, reflecting modifications during decompression of the rocks. Using the same approach, the rocks are inferred to have suprasolidus peak conditions, increasing northwards from 11.5 kbar/745 °C, 12.5 kbar/780 °C to 13 kbar/800 °C. Their modelled peak assemblages involve diopside, garnet, hornblende, plagioclase, rutile and quartz, yet diopside is not observed petrographically. The post‐peak decompression is characterized by diopside + garnet + quartz + melt = hornblende + plagioclase, causing the diopside consumption and garnet compositions to be largely modified. Thus, the pesudosection approach is expected to provide better pressure results than conventional thermobarometry, because the later approach cannot be applied with confidence to rocks with multi‐generation assemblages. U–Pb dating of zircon in the Wutai sample records a protolith age of c. 2.50 Ga, and a metamorphic age of c. 1.95 Ga, while zircon in the Hengshan samples records metamorphic ages of c. 1.92 Ga. The c. 1.95 Ga is interpreted to represent the pre‐peak or peak metamorphic stages, and the ages of c. 1.92 Ga are assigned to represent the cooling stages. All rocks in the Wutai–Hengshan area share similar clockwise P–T morphologies. They may represent metamorphic products at different crustal depths in one orogenic event, which included a main thickening stage at c. 1.95 Ga followed by a prolonged uplift and cooling after 1.92 Ga.  相似文献   

4.
The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau, is considered as the main suture zone marking the closure of the Palaeo‐Tethys Ocean between the Indochina and Sibumasu blocks. Here, we investigate the recently discovered retrograded eclogites from this suture zone in terms of their petrological, geochemical and geochronological features, with the aim of constraining the metamorphic evolution and protolith signature. Two types of metabasites are identified: retrograded eclogites and mafic schists. The igneous precursors of the retrograded eclogites exhibit rare earth element distribution patterns and trace element abundance similar to those of ocean island basalts, and are inferred to have been derived from a basaltic seamount in an intra‐oceanic tectonic setting. In contrast, the mafic schists show geochemical affinity to arc‐related volcanics with the enrichment of Rb, Th and U, and depletion of Nb, Ta, Zr, Hf and Ti, and their protoliths possibly formed at an active continental margin tectonic setting. Retrograded eclogites are characterized by peak metamorphic mineral assemblages of garnet, omphacite, white mica, lawsonite and rutile, and underwent five‐stage metamorphic evolution, including pre‐peak prograde stage (M1) at 18–19 kbar and 400–420°C, peak lawsonite‐eclogite facies (M2) at 24–26 kbar and 520–530°C, post‐peak epidote–eclogite facies decompression stage (M3) at 13–18 kbar and 530–560°C, subsequent amphibolite facies retrogressive stage (M4) at 8–10 kbar and 530–600°C, and late greenschist facies cooling stage (M5) at 5–8 kbar and 480–490°C. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb spot analyses of zircon show two distinct age groups. The magmatic zircon from both the retrograded eclogite and mafic schist yielded protolith ages of 451 ± 3 Ma, which is consistent with the ages of Early Palaeozoic ophiolitic complexes and ocean island sequences in the CMOB reported in previous studies. In contrast, metamorphic zircon from the retrograded eclogite samples yielded consistent Triassic metamorphic ages of 246 ± 2 and 245 ± 2 Ma, which can be interpreted as the timing of closure of the Palaeo‐Tethys Ocean. The compatible peak metamorphic mineral assemblages, P–T–t paths and metamorphic ages, as well as the similar protolith signatures for the eclogites in the CMOB and Longmu Co–Shuanghu suture (LCSS) suggest that the two belts formed part of a cold oceanic subduction system in the Triassic. The main suture zone of the Palaeo‐Tethyan domain extends at least 1,500 km in length from the CMOB to the LCSS in the Tibetan Plateau. The identification of lawsonite‐bearing retrograded eclogites in the CMOB provides important insights into the tectonic framework and complex geological evolution of the Palaeo‐Tethys.  相似文献   

5.
The Anita Peridotite is a ~20 km long by 1 km wide exhumed fragment of spinel facies sub‐arc lithospheric mantle that is enclosed entirely within the ≤4 km wide ductile Anita Shear Zone, and bounded by quartzofeldspathic lower crustal gneisses in Fiordland, south‐western New Zealand. Deformation textures, grain growth calculations and thermodynamic modelling results indicate the mylonitic peridotite fabric formed during rapid cooling, and therefore likely during extrusion. However, insights into the exhumation process are gained through examination of aluminous garnet‐bearing meta‐sedimentary gneisses also enclosed within the shear zone. P–T calculations indicate that prior to mylonitization the gneisses enclosing the peridotite equilibrated at 675–746 °C in the sillimanite stability field (stage I), before being buried to near the base of thickened arc crust (stage II; ~686 ± 26 °C and 10.7 ± 0.8 kbar). From this point on, the peridotite unit and the quartzofeldspathic rocks share a deformation history involving extensive recrystallization (stage III) within the Anita Shear Zone. Coupled exhumation of these portions of lower crust and upper mantle occurred during regional thinning of over‐thickened lithosphere at c. 104 Ma (U–Pb zircon). Our favoured model for the exhumation process involves heterogeneous transpressive deformation within the translithospheric Anita Shear Zone, which provided a conduit for ductile extrusion through the crust.  相似文献   

6.
This integrated study on the pressure–temperature–deformation‐time record of the Goszów light quartzites from the Młynowiec–Stronie Group (Sudety Mts., SW Poland) provides new data that improve our understanding of the structure and geodynamic development of the Orlica–Śnieżnik Dome (OSD) as a Gondwana‐derived unit involved in the formation of the Variscan orogen. The structural and metamorphic record of the Goszów light quartzites, when compared to the under‐ and overlying rock formations, indicates that the whole Młynowiec–Stronie Group in the eastern part of the Saxothuringian terrane functioned as a single, integral lithotectonic unit with no visible structural or metamorphic discontinuities. The sequence of structures and thermodynamic modelling indicate that the light quartzites underwent the same polyphase tectonometamorphic evolution as the adjacent rocks belonging to the Młynowiec–Stronie Group. The development of tight, N–S‐trending folds and axial penetrative metamorphic foliation was related to metamorphic progression from 500 °C to 640 °C at 6–7 kbar. Subsequently, under the retrogressive conditions below 540 °C, the foliation was reactivated as a result of subsequent N–S‐directed ductile shearing and extension. Therefore, the study of the light quartzites exemplifies the penetrative structures in the OSD, and the metamorphic foliation and N–S‐trending lineation are composite structures. The monazite metamorphic ages of ca. 364 Ma and 335 Ma may be related to the approximately E–W‐ and N–S‐oriented tectonic movements, respectively, which occurred during the amalgamation of the Saxothuringian terrane with Brunovistulia. In contrast, the previously unknown early Palaeozoic monazite age of ca. 494 Ma is interpreted as the protolith age of the light quartzites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The Blåhø Nappe on the island of Fjørtoft, which represents an isolated portion of the Seve Nappe Complex in the Western Gneiss Region, Norway, has been suggested to have experienced two deep burial cycles during the Caledonian orogeny. However, evidence on this multiple burial process by the derivation of a pressure–temperature–time (P–T–t) path has never been given in the literature. In this study, the ‘diamondiferous’ kyanite–garnet gneiss from the Blåhø Nappe on Fjørtoft was revisited to determine if such a process was correct. Two types of garnet, porphyroblastic garnet‐1 and fine‐grained garnet‐2, were recognized in the gneiss. The core of garnet‐1 is poor in Ca and documents P–T conditions of 1.2–1.3 GPa at c. 880°C based on pseudosection modelling. The inner rims of garnet‐1 and the core of garnet‐2 are both richer in Ca, recording P–T conditions of 1.35–1.45 GPa and 770–820°C. Application of conventional geothermobarometry on the outer rim of garnet‐1 and the rim of garnet‐2 yielded retrograde P–T conditions of 0.75–0.90 GPa and 610–685°C. These estimates define an anticlockwise P–T path at pressures below 1.5 GPa. Accessory monazite was dated with the electron microscope. Relicts of detrital monazite in the gneiss point to Sveconorwegian and possibly also Cryogenian provenance for the detritus of the sedimentary protolith. Metamorphic monazite in the gneiss records a wide age range from 460 to 380 Ma, with a peak c. 435 Ma and a shoulder at 395 Ma. These data suggest that the original (Ediacaran?) Baltica margin sediment (gneiss protolith) was transported to the base of an overlying plate during the early Caledonian (pre‐Scandian) orogeny. A long residence time of the metasedimentary rock at this base caused its heating to 880°C and homogenization of the early garnet chemistry. The late Caledonian (Scandian) collision between Baltica and Laurentia led to further burial, during which the studied gneiss was close to the former surface of the downgoing continental plate and, thus, cooled. The reconstructed P–T–t path confirms the multiple burial history of the Blåhø Nappe but contradicts previous ideas of deep burial of the Fjørtoft gneiss to more than 100 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号