首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K‐edge XANES (X‐ray absorption near edge structure) and μ‐Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur‐functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S?2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro‐Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro‐Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ‐Raman D band parameters. The Raman parameters in Allende IOM that was interpreted in terms of amorphous carbon with regions of large clusters of benzene rings, was transformed after the HT to those with fewer benzene rings.  相似文献   

2.
Past studies of the various separable carbonaceous fractions have been unable to account for all of C in primitive chondrites. In particular, up to 20–50% of the C is lost during acid leaching of bulk samples even after the C in carbonates and soluble organic matter is accounted for. To try to better characterize the nature of this “missing C,” we have compared the bulk infrared (IR) absorption spectra of a number of primitive chondrites with those of their previously reported insoluble organic matter (IOM). The aliphatic C–H stretching bands, in particular, allow us to compare the molecular structures of bulk C with that of IOM. The spectral differences between bulk C and IOM reflect “missing C” phases that were lost during acid leaching, although we cannot completely exclude the possibility that the OM was modified after demineralization. Comparing IR spectra of bulk meteorite powder and IOM suggests that the missing C varies in its molecular structure, and that mildly thermally metamorphosed type 3 chondrites tend to be richer in an aliphatic fraction with lower CH2/CH3 ratios, relative to IOM, compared to aqueously altered carbonaceous chondrites (CI/CM/CR). The missing C is most likely released from acid‐labile functional groups, such as esters, acetals, and amides, during demineralization, although it cannot be ruled out that some fraction of the missing C is in small grains that are difficult to recover from suspension, or in water‐soluble compounds trapped in phyllosilicates.  相似文献   

3.
Abstract— We have analyzed the chemically and isotopically well‐characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so‐called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub‐) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures.  相似文献   

4.
Abstract– Insight into the chemical history of an ungrouped type 2 carbonaceous chondrite meteorite, Wisconsin Range (WIS) 91600, is gained through molecular analyses of insoluble organic matter (IOM) using solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, X‐ray absorption near edge structure spectroscopy (XANES), and pyrolysis‐gas chromatography coupled with mass spectrometry (pyr‐GC/MS), and our previous bulk elemental and isotopic data. The IOM from WIS 91600 exhibits similarities in its abundance and bulk δ15N value with IOM from another ungrouped carbonaceous chondrite Tagish Lake, while it exhibits H/C, δ13C, and δD values that are more similar to IOM from the heated CM, Pecora Escarpment (PCA) 91008. The 13C NMR spectra of IOM of WIS 91600 and Tagish Lake are similar, except for a greater abundance of CHxO species in the latter and sharper carbonyl absorption in the former. Unusual cross‐polarization (CP) dynamics is observed for WIS 91600 that indicate the presence of two physically distinct organic domains, in which the degrees of aromatic condensation are distinctly different. The presence of two different organic domains in WIS 91600 is consistent with its brecciated nature. The formation of more condensed aromatics is the likely result of short duration thermal excursions during impacts. The fact that both WIS 91600 and PCA 91008 were subjected to short duration heating that is distinct from the thermal history of type 3 chondrites is confirmed by Carbon‐XANES. Finally, after being briefly heated (400 °C for 10 s), the pyrolysis behavior of Tagish Lake IOM is similar to that of WIS 91600 and PCA 91008. We conclude that WIS 91600 experienced very moderate, short duration heating at low temperatures (<500 °C) after an episode of aqueous alteration under conditions that were similar to those experienced by Tagish Lake.  相似文献   

5.
The water‐soluble organic compounds in carbonaceous chondrite meteorites constitute a record of the synthetic reactions occurring at the birth of the solar system and those taking place during parent body alteration and may have been important for the later origins and development of life on Earth. In this present work, we have developed a novel methodology for the simultaneous analysis of the molecular distribution, compound‐specific δ13C, and enantiomeric compositions of aliphatic monocarboxylic acids (MCA) extracted from the hot‐water extracts of 16 carbonaceous chondrites from CM, CR, CO, CV, and CK groups. We observed high concentrations of meteoritic MCAs, with total carbon weight percentages which in some cases approached those of carbonates and insoluble organic matter. Moreover, we found that the concentration of MCAs in CR chondrites is higher than in the other meteorite groups, with acetic acid exhibiting the highest concentration in all samples. The abundance of MCAs decreased with increasing molecular weight and with increasing aqueous and/or thermal alteration experienced by the meteorite sample. The δ13C isotopic values of MCAs ranged from ?52 to +27‰, and aside from an inverse relationship between δ13C value and carbon straight‐chain length for C3–C6 MCAs in Murchison, the 13C‐isotopic values did not correlate with the number of carbon atoms per molecule. We also observed racemic compositions of 2‐methylbutanoic acid in CM and CR chondrites. We used this novel analytical protocol and collective data to shed new light on the prebiotic origins of chondritic MCAs.  相似文献   

6.
Abstract– Dhofar (Dho) 225 and Dho 735 are carbonaceous chondrites found in a hot desert and having affinities to Belgica‐like Antarctic chondrites (Belgica [B‐] 7904 and Yamato [Y‐] 86720). Texturally they resemble CM2 chondrites, but differ in mineralogy, bulk chemistry and oxygen isotopic compositions. The texture and main mineralogy of Dho 225 and Dho 735 are similar to the CM2 chondrites, but unlike CM2 chondrites they do not contain any (P, Cr)‐sulfides, nor tochilinite 6Fe0.9S*5(Fe,Mg)(OH)2. H2O‐contents of Dho 225 and Dho 735 (1.76 and 1.06 wt%) are lower than those of CM2 chondrites (2–18 wt%), but similar to those in the metamorphosed carbonaceous chondrites of the Belgica‐like group. Bulk compositions of Dho 225 and Dho 735, as well as their matrices, have low Fe and S and low Fe/Si ratios relative to CM2 chondrites. X‐ray powder diffraction patterns of the Dho 225 and Dho 735 matrices showed similarities to laboratory‐heated Murchison CM2 chondrite and the transformation of serpentine to olivine. Dho 225 and 735’s oxygen isotopic compositions are in the high 18O range on the oxygen diagram, close to the Belgica‐like meteorites. This differs from the oxygen isotopic compositions of typical CM2 chondrites. Experimental results showed that the oxygen isotopic compositions of Dho 225 and Dhofar 725, could not be derived from those of typical CM2 chondrites via dehydration caused by thermal metamorphism. Dho 225 and Dho 735 may represent a group of chondrites whose primary material was different from typical CM2 chondrites and the Belgica‐like meteorites, but they formed in an oxygen reservoir similar to that of the Belgica‐like meteorites.  相似文献   

7.
Abstract— Chemical structures of the insoluble organic matter (IOM) from the Antarctic CM2 chondrites (Yamato [Y‐] 791198, 793321; Belgica [B‐] 7904; Asuka [A‐] 881280, 881334) and the Murchison meteorite were analyzed by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy. Different types of carbons were characterized, such as aliphatic carbon (Ali‐C), aliphatic carbon linked to hetero atom (Hetero‐Ali‐C), aromatic carbon (Aro‐C), carboxyls (COOR), and carbonyls (C=O). The spectra of the IOM from Murchison and Y‐791198 showed two major peaks: Ali‐C and Aro‐C, while the spectra from the other meteorites showed only one major peak of Aro‐C. Carbon distribution was determined both by manual integration and deconvolution. For most IOM, the Aro‐C was the most abundant (49.8–67.8%) of all carbon types. When the ratios of Ali‐C to Aro‐C (Ali/Aro) were plotted with the atomic hydrogen to carbon ratio (H/C), a correlation was observed. If we use the H/C as a parameter for the thermal alteration event on the meteorite parent body, this result shows a different extent of thermal alteration. In addition, IOM with a lower Ali/Aro showed a lower ratio of Ali‐C to COOR plus C=O (Ali / (COOR + C=O)). This result suggests that the ratio of CO moieties to aliphatic carbon in IOM might reflect chemical oxidation that was involved in hydrothermal alteration.  相似文献   

8.
Abstract– To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro‐spectroscopy combined with a heating stage. Decreases of aliphatic C–H band area under Ar flow were well fitted with Ginstling‐Brounshtein three‐dimensional diffusion model, and the rate constants for decreases of aliphatic C–H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea = 109 ± 3 kJ mol?1 and A = 8.7 × 104 s?1 for IOM, and Ea = 61 ± 6 kJ mol?1 and A = 3.8 s?1 for bulk, respectively. Activation energy values of aliphatic C–H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C–H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C–H is lost approximately within 200 years at 100 °C and 100 Myr at 0 °C. Assuming alteration period of 7.5 Myr, alteration temperatures could be calculated to be <15 ± 12 °C. Aliphatic C–H decrease profiles in a parent body can be estimated using time–temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C–H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.  相似文献   

9.
Organic nanoglobules are microscopic spherical carbon‐rich objects present in chondritic meteorites and other astromaterials. We performed a survey of the morphology, organic functional chemistry, and isotopic composition of 184 nanoglobules in insoluble organic matter (IOM) residues from seven primitive carbonaceous chondrites. Hollow and solid nanoglobules occur in each IOM residue, as well as globules with unusual shapes and structures. Most nanoglobules have an organic functional chemistry similar to, but slightly more carboxyl‐rich than, the surrounding IOM, while a subset of nanoglobules have a distinct, highly aromatic functionality. The range of nanoglobule N isotopic compositions was similar to that of nonglobular 15N‐rich hotspots in each IOM residue, but nanoglobules account for only about one third of the total 15N‐rich hotspots in each sample. Furthermore, many nanoglobules in each residue contained no 15N enrichment above that of bulk IOM. No morphological indicators were found to robustly distinguish the highly aromatic nanoglobules from those that have a more IOM‐like functional chemistry, or to distinguish 15N‐rich nanoglobules from those that are isotopically normal. The relative abundance of aromatic nanoglobules was lower, and nanoglobule diameters were greater, in more altered meteorites, suggesting the creation/modification of IOM‐like nanoglobules during parent‐body processing. However, 15N‐rich nanoglobules, including many with highly aromatic functional chemistry, likely reflect preaccretionary isotopic fractionation in cold molecular cloud or protostellar environments. These data indicate that no single formation mechanism can explain all of the observed characteristics of nanoglobules, and their properties are likely a result of multiple processes occurring in a variety of environments.  相似文献   

10.
The C2 ungrouped Tagish Lake meteorite preserves a range of lithologies, reflecting variable degrees of parent‐body aqueous alteration. Here, we report on soluble organic compounds, including aliphatic and aromatic hydrocarbons, monocarboxylic acids, and amino acids, found within specimens representative of the range of aqueous alteration. We find that differences in soluble organic compounds among the lithologies may be explained by oxidative, fluid‐assisted alteration, primarily involving the derivation of soluble organic compounds from macromolecular material. In contrast, amino acids probably evolved from precursor molecules, albeit in parallel with other soluble organic compounds. Our results demonstrate the role of parent‐body alteration in the modification of organic matter and generation of prebiotic compounds in the early solar system, and have implications for interpretation of the complement of soluble organic compounds in carbonaceous chondrites.  相似文献   

11.
Abstract— We studied the petrography, mineralogy, bulk chemical, I-Xe, and O-isotopic compositions of three dark inclusions (E39, E53, and E80) in the reduced CV3 chondrite Efremovka. They consist of chondrules, calcium-aluminum-rich inclusions (CAIs), and fine-grained matrix. Primary minerals in chondrules and CAIs are pseudomorphed to various degrees by a mixture largely composed of abundant (>95%), fine-grained (>0.2 μm) fayalitic olivine (Fa35–42) and minor amounts of chlorite, poorly-crystalline Si-Al-rich material, and chromite; chondrule and CAI shapes and textures are well-preserved. Secondary Ca-rich minerals (Ti-andradite, kirschsteinite, Fe-diopside) are common in chondrule pseudomorphs and matrices in E39 and E80. The degree of replacement increases from E53 to E39 to E80. Fayalitic olivines are heavily strained and contain abundant voids similar to those in incompletely dehydrated phyllosilicates in metamorphosed CM and CI chondrites. Opaque nodules in chondrules consist of Ni- and Co-rich taenite, Co-rich kamacite, and wairauite; sulfides are rare; magnetite is absent. Bulk O-isotopic compositions of E39 and E53 plot in the field of aqueously altered CM chondrites, close to the terrestrial fractionation line; the more heavily altered E39 is isotopically heavier than the less altered E53. The apparent I-Xe age of E53 is 5.4 Ma earlier than Bjurböle and 5.7 ± 2.0 Ma earlier than E39. The I-Xe data are consistent with the most heavily altered dark inclusion, E39 having experienced either longer or later alteration than E53. Bulk lithophile elements in E39 and E53 most closely match those of CO chondrites, except that Ca is depleted and K and As are enriched. Both inclusions are depleted in Se by factors of 3–5 compared to mean CO, CV, CR, or CK chondrites. Zinc in E39 is lower than the mean of any carbonaceous chondrite groups, but in E53 Zn is similar to the means in CO, CV, and CK chondrites. The Efremovka dark inclusions experienced various degrees of aqueous alteration, followed by low degree thermal metamorphism in an asteroidal environment. These processes resulted in preferential oxidation of Fe from opaque nodules and formation of Ni- and Co-rich metal, metasomatic alteration of primary minerals in chondrules and CAIs, and the formation of fayalitic olivine and secondary Ca-Fe-rich minerals. Based on the observed similarities of the alteration mineralization in the Efremovka and Allende dark inclusions, we infer that the latter may have experienced similar alteration processes.  相似文献   

12.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

13.
Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.  相似文献   

14.
Abstract– We used instrumental neutron activation analysis and petrography to determine bulk and phase compositions and textural characteristics of 15 carbonaceous chondrites of uncertain classification: Acfer 094 (type 3.0, ungrouped CM‐related); Belgica‐7904 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Wisconsin Range (WIS) 91600, Dhofar 225, and Yamato‐86720); Dar al Gani (DaG) 055 and its paired specimen DaG 056 (anomalous, reduced CV3‐like); DaG 978 (type 3 ungrouped); Dominion Range 03238 (anomalous, magnetite‐rich CO3.1); Elephant Moraine 90043 (anomalous, magnetite‐bearing CO3); Graves Nunataks 98025 (type 2 or type 3 ungrouped); Grosvenor Mountains (GRO) 95566 (anomalous CM2 with a low degree of aqueous alteration); Hammadah al Hamra (HaH) 073 (type 4 ungrouped, possibly related to the Coolidge‐Loongana [C‐L] 001 grouplet); Lewis Cliff (LEW) 85311 (anomalous CM2 with a low degree of aqueous alteration); Northwest Africa 1152 (anomalous CV3); Pecora Escarpment (PCA) 91008 (anomalous, metamorphosed CM); Queen Alexandra Range 99038 (type 2 ungrouped); Sahara 00182 (type 3 ungrouped, possibly related to HaH 073 and/or to C‐L 001); and WIS 91600 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Belgica‐7904, Dhofar 225, and Y‐86720). Many of these meteorites show fractionated abundance patterns, especially among the volatile elements. Impact volatilization and dehydration as well as elemental transport caused by terrestrial weathering are probably responsible for most of these compositional anomalies. The metamorphosed CM chondrites comprise two distinct clusters on the basis of their Δ17O values: approximately ?4‰ for PCA 91008, GRO 95566, DaG 978, and LEW 85311, and approximately 0‰ for Belgica‐7904 and WIS 91600. These six meteorites must have been derived from different asteroidal regions.  相似文献   

15.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

16.
Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. ( 2007 ) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.  相似文献   

17.
Abstract– CM chondrites were subjected to aqueous alteration and, in some cases, to secondary metamorphic heating. The effects of these processes vary widely, and have mainly been documented in silicate phases. Herein, we report the characteristic features of Fe‐Ni metal and sulfide phases in 13 CM and 2 CM‐related chondrites to explore the thermal history of these chondrites. The texture and compositional distribution of the metal in CM are different from those in unequilibrated ordinary and CO chondrites, but most have similarities to those in highly primitive chondrites, such as CH, CR, and Acfer 094. We classified the CM samples into three categories based on metal composition and sulfide texture. Fe‐Ni metal in category A is kamacite to martensite. Category B is characterized by pyrrhotite grains always containing blebs or lamellae of pentlandite. Opaque mineral assemblages of category C are typically kamacite, Ni‐Co‐rich metal, and pyrrhotite. These categories are closely related to the degree of secondary heating and are not related to degree of the aqueous alteration. The characteristic features of the opaque minerals can be explained by secondary heating processes after aqueous alteration. Category A CM chondrites are unheated, whereas those in category B experienced small degrees of secondary heating. CMs in category C were subjected to the most severe secondary heating process. Thus, opaque minerals can provide constraints on the thermal history for CM chondrites.  相似文献   

18.
A carbonaceous chondrite was recovered immediately after the fall near the village of Diepenveen in the Netherlands on October 27, 1873, but came to light only in 2012. Analysis of sodium and poly‐aromatic hydrocarbon content suggests little contamination from handling. Diepenveen is a regolith breccia with an overall petrology consistent with a CM classification. Unlike most other CM chondrites, the bulk oxygen isotopes are extremely 16O rich, apparently dominated by the signature of anhydrous minerals, distributed on a steep slope pointing to the domain of intrinsic CM water. A small subset plots closer to the normal CM regime, on a parallel line 2 ‰ lower in δ17O. Different lithologies in Diepenveen experienced varying levels of aqueous alteration processing, being less aqueously altered at places rather than more heated. The presence of an agglutinate grain and the properties of methanol‐soluble organic compounds point to active impact processing of some of the clasts. Diepenveen belongs to a CM clan with ~5 Ma CRE age, longer than most other CM chondrites, and has a relatively young K‐Ar resetting age of ~1.5 Ga. As a CM chondrite, Diepenveen may be representative of samples soon to be returned from the surface of asteroid (162173) Ryugu by the Hayabusa2 spacecraft.  相似文献   

19.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   

20.
The morphology, molecular composition, and distribution of organic matter (OM) were investigated in a suite of CR chondrites to better constrain its hydrothermal evolution. Multiple focused ion beam sections were extracted from the matrices of seven CR chondrites. Scanning transmission X-ray microscopy and transmission electron microscopy reveal OM ubiquitously distributed across the CR matrices. OM mainly occurs as either discrete submicron rounded or irregularly shaped vein-like particles. Two spectral populations of organic particles were identified by carbon K-edge X-ray absorption near edge structure (XANES): the most abundant one, similar to insoluble organic matter (IOM) residues, contains aromatic, carbonyl, and carboxylic groups. The second population is more aromatic-rich and lacks a distinctive carbonyl peak. An additional, ubiquitous organic component occurs associated with amorphous silicates and phyllosilicates. Less aromatic but aliphatic- and carboxylic-rich, this diffuse OM is interpreted as the result of the redistribution of organic compounds by aqueous fluids. The most altered CR1 GRO 95577 contains a more mature OM and highly aliphatic- and carboxylic-rich diffuse OM. This evolution, from the CR2s to the CR1, is comparable to that of terrestrial gas shale maturation involving cracking reactions, releasing bitumen-like, aliphatic-, and carboxylic-rich compounds, and aromatic residues. Our observations support the accretion of soluble OM and its later polymerization to IOM, as well as the maturation of IOM and its partial oxidation, releasing mobile compounds. The differences in GRO 95577 are clearly attributable to the hydrothermal episode(s), but the relative role of water and temperature on the evolution of OM remains elusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号