首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Abstract– The Almahata Sitta meteorite is the first case of recovered extraterrestrial material originating from an asteroid that was detected in near Earth space shortly before entering and exploding in the high atmosphere. The aims of our project within the 2008 TC3 consortium were investigating Almahata Sitta’s (AS) magnetic signature, phase composition and mineralogy, focussing on the opaque minerals, and gaining new insights into the magnetism of the ureilite parent body (UPB). We report on the general magnetic properties and behavior of Almahata Sitta and try to place the results in context with the existing data set on ureilites and ureilite parent body models. The magnetic signature of AS is dominated by a set of low‐Ni kamacites with large grain sizes. Additional contributions come from micron‐sized kamacites, suessite, (Cr) troilite, and daubreelite, mainly found in the olivine grains adjacent to carbon‐rich veins. Our results show that the paleomagnetic signal is of extraterrestrial origin as can be seen by comparing with laboratory produced magnetic records (IRM). Four types of kamacite (I–IV) have been recognized in the sample. The elemental composition of the ureilite vein metal Kamacite I (particularly Co) clearly differs from the other kamacites (II‐IV), which are considered to be indigenous. Element ratios of kamacite I indicate that it was introduced into the UPB by an impactor, supporting the conclusions of Gabriel and Pack (2009) .  相似文献   

2.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   

3.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms.  相似文献   

4.
Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper‐arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe‐bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X‐ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.  相似文献   

5.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

6.
Abstract— We present a method that combines Mössbauer spectroscopy and X‐ray diffraction to quantify the modal mineralogy of unequilibrated ordinary chondrites (UOCs). Despite being a fundamental tool in the interpretation of geological systems, there are no modal mineralogical data available for these meteorites. This is due to their fine‐grained nature, highly heterogeneous silicate mineralogy, and the presence of poorly characterized phases. Consequently, it has not been possible to obtain accurate modal mineralogy by conventional techniques such as point counting. Here we use Mössbauer spectroscopy as a preliminary identification technique and X‐ray diffraction provides the quantification for a suite of recent UOC falls. We find the most primitive UOCs to contain a significant amount of phyllosilicate material that was converted during metamorphism to form ferromagnesian silicates. A complete suite of Antarctic samples is analyzed by each method to observe mineralogical trends and these are compared with trends shown by recent falls. The fact that mineralogical relationships shown by finds and falls are in agreement allows us to be confident that we are observing the products of pre‐terrestrial alteration. Mössbauer spectroscopy reveals evidence of steadily increasing reduction with metamorphism in the UOCs. Because this technique allows comparisons to be made between UOCs and EOCs, our reduction sequence can be combined with other evidence showing progressive oxidation in the EOCs. This yields an integrated model of changing redox conditions on equilibrating ordinary chondrite parent bodies.  相似文献   

7.
Abstract— The crystal structure of druse clinopyroxene from the D'Orbigny angrite, (Ca0.944 Fe2+0.042 Mg0.010Mn0.004) (Mg0.469Fe2+0.317Fe3+0.035Al0.125Cr0.010Ti0.044) (Si1.742Al0.258) O6, a = 9.7684(2), b = 8.9124(2), c = 5.2859(1) Å, β = 105.903(1)°, V = 442.58 Å3, space group C2/c, Z = 2, has been refined to an R1 index of 1.92% using single‐crystal X‐ray diffraction data. The unit formula, calculated from electron microprobe analysis, and the refined site scattering values were used to assign site populations. The distribution of Fe2+and Mg over the M1 and M2 sites suggests a closure temperature of 1000 °C. Mössbauer spectroscopy measurements were done at room temperature on a single crystal and a powdered sample. The spectra are adequately fit by a Voigt‐based quadrupole‐splitting distribution model having two generalized sites, one for Fe2+with two Gaussian components and one for Fe3+with one Gaussian component. The two ferrous components are assigned to Fe2+at the M1 site, and arise from two different next‐nearest‐neighbor configurations of Ca and Fe cations at the M2 site: (3Ca,0Fe) and (2Ca,1Fe). The Fe3+/Fetot ratio determined by Mössbauer spectroscopy is in agreement with that calculated from the electron microprobe analysis. The results are discussed in connection with the redox and thermal history of D'Orbigny.  相似文献   

8.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

9.
T. Kohout  R. Kiuru  P. Scheirich  R. Macke 《Icarus》2011,212(2):697-700
The density measurements of Almahata Sitta ureilites reveal a bulk density of ∼3.1 g/cm3. This value, together with the 2008 TC3 asteroid shape model and albedo, was used to estimate the asteroid’s mass. Based on the study of recovered meteorites and atmospheric entry observations Asteroid 2008 TC3 is compositionally heterogeneous and of low mechanical strength. Thus we consider the presence of significant macroporosity likely, lowering asteroid’s bulk density compared to that of the Almahata Sitta ureilites. Most realistic albedos lie in a range of 0.09-0.2 and the presence of significant macroporosity leads to mass estimates below 20 × 103 kg, which is lower than previously estimated. The presence of a non-ureilitic fraction and space weathering may affect the albedo and also influence the mass estimates. However, from current data it is not possible to quantify this effect.  相似文献   

10.
Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44–36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50–70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre‐atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re‐evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5–0.6 Ma after formation of calcium‐aluminum‐rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti‐type chondrites were implanted by low‐velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth‐crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.  相似文献   

11.
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites.  相似文献   

12.
Abstract— A new olivine‐pigeonite ureilite containing abundant diamonds and graphite was found in the United Arab Emirates. This is the first report of a meteorite in this country. The sample is heavily altered, of medium shock level, and has a total weight of 155 g. Bulk rock, olivine (Fo79.8–81.8) and pyroxene (En73.9–75.2, Fs15.5–16.9, Wo8.8–9.5) compositions are typical of ureilites. Olivine rims are reduced with Fo increasing up to Fo96.1–96.8. Metal in these rims is completely altered to Fehydroxide during terrestrial weathering. We studied diamond and graphite using micro‐Raman and in situ synchrotron X‐ray diffraction. The main diamond Raman band (LO = TO mode at ?1332 cm?1) is broadened when compared to well‐ordered diamond single crystals. Full widths at half maximum (FWHM) values scatter around 7 cm?1. These values resemble FWHM values obtained from chemical vapor deposition (CVD) diamond. In situ XRD measurements show that diamonds have large grain sizes, up to >5 μm. Some of the graphite measured is compressed graphite. We explore the possibilities of CVD versus impact shock origin of diamonds and conclude that a shock origin is much more plausible. The broadening of the Raman bands might be explained by prolonged shock pressure resulting in a transitional Raman signal between experimentally shock‐produced and natural diamonds.  相似文献   

13.
Abstract– A method is described for imaging in 3‐D the interiors of meteoritic chromite grains and their inclusions using synchrotron radiation X‐ray tomographic microscopy. In ordinary chondrites, chromite is the only common mineral that survives long‐term weathering on Earth. Information about the silicate matrix of the original meteorite, however, can be derived from mineral inclusions preserved in the protecting chromite. The inclusions are crucial in the classification of fossil meteorites as well as sediment‐dispersed chromite grains from decomposed meteorites and larger impacts, as these are used for characterizing the past influx of material to Earth, but have previously been difficult to locate. The method is non‐destructive and time efficient for locating inclusions. The method allowed quantitative and morphological studies of both host chromite grains and inclusions in three dimensions. The study of 385 chromite grains from eight chondrites (H4–6, L4–6, LL4, LL6) reveals that inclusions are abundant and equally common in all samples. Almost two‐thirds of all chromite grains contain inclusions, regardless of group and type. The study also shows that the size of the inclusions and the host chromite grains, as well as the number of inclusions, within the host chromite grains vary with petrographic type. Thus, the petrographic type of the host of a suite of chromite grains can be determined based solely on inclusion content. The study also revealed that the amount of fractures in the host chromite can be correlated to previously assigned shock stages for the various chondrites. The study has thus shown that the features and inclusions of fossil chromite grains can give similar information about a former host meteorite as do studies of an unweathered whole meteorite, meaning that this technique is essential in the studies of ancient meteorite flux to Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号